Table of Contents

About this document

Regarding the LPI 102 Exam
- Approximate number of questions per topic
- Weight per topic
- Tips on writing the exam

Topic 105: Kernel

1. **Summary**
2. **1.105.1 Manage/Query kernel and kernel modules at runtime**
 - Kernel types
 - Kernel options at boot time
 - Kernel Modules
 - Loading Modules
 - Controlling modules
 - `lsmod`
 - `insmod`
 - `modprobe`
 - `rmmod`
 - `depmod`
 - `modinfo`
 - `/etc/modules.conf` (or `/etc/conf.modules`

Topic 106: Boot, Initialization, Shutdown and Runlevels

1. **Summary**
2. **1.106.1 Boot the system**
3. **1.106.2 Change runlevels and shutdown or reboot system**
 - Runlevels
 - The `/etc/init.d` directory
Displaying the current runlevel..17
Changing the runlevel..17
/etc/inittab file format...17
Shutting down the system properly..18
 shutdown command...19

Topic 107: Printing..20
Summary..20
1.107.2 Manage printers and print queues...21
 How ip printing works...21
 Print related commands..21
 Principle of print queues under Linux...22
 Definition of print queues in /etc/printcap...................................22
 Other files..22
 Controlling the print queues..22
 Displaying print jobs..23
 Deleting print jobs...23
 Important points..24
1.107.3 Print files..25
 Controlling print queues..25
 Print engine lpd daemon...26
 Special file types converters for printing.....................................26
 Important points..27
1.107.4 Install and configure local and remote printers.......................28
 Printer definitions file: /etc/printcap...28
 /etc/printcap examples..28
 Using Filters..29
 apsfilter..29
 Magicfilter..30
 Linking to a remote Windows print server.....................................31
 lpd print Daemon...31

Topic 108: Documentation..33
Summary..33
1.108.1 Use and manage local system documentation........................34
 Different sources of help...34
 Man pages...35
 Files, programs and variables..35
 Locations of man pages..36
 manpath..36
 Pager...36
 man command examples..36
 man pages filters and GUIs...37
 Filters examples..37
 man command options...37
 catman...38
 info pages..38
1.108.2 Find Linux documentation on the Internet............................40
 Linux Documentation Project...40
 Newsgroups..40
 Newsgroup Archives...41
 Mailing lists..41
1.108.5 Notify users on system-related issues....................................42
 Login Sequence...42
 /etc/issue..42
Topic 109: Shells, Scripting, Programming and Compiling

Summary
1.109.1 Customize and use the shell environment
 Login vs. Non-login shell
 Reason for 2 types of shell
 Variable inheritance
 Interactive and non-interactive shells
 Sequence of events when bash starts
 Commands for shell/environment variables
 Aliases
 Functions
 Command search priority
 set
 unset

1.109.2 Customize or write simple scripts
 What is a shell script
 Conditions for running a script
 Language used in shell scripts
 Passing parameters to a script
 Special Parameters
 The shift command
 The set and unset commands
 Conditional statements
 The if conditional branching directive
 The case conditional branching directive
 Looping in scripts
 The while conditional loop directive
 The until conditional loop directive
 The for loop directive
 Shell functions
 Exit codes and the variable $?
 The && and || conditional branching
 Mailing messages to root from a script
 Location and security for bash scripts
 CONDITIONAL EXPRESSIONS
 Test File Operators
 Test String Operators
 Test Integer Operators
 Other test Operators

Topic 111: Administrative Tasks

Summary
1.111.1 Manage users and group accounts and related system files
 /etc/passwd
 /etc/shadow
 Administration of user accounts
 useradd
 usermod
 userdel
 passwd
 chage
 newusers
 chpassword
 /etc/login.defs
 Other login / user related commands
Administration of groups..64
Group administration commands ..64
groupadd..64
groupmod...65
groupdel...65
gpasswd..65
newgrp...66
sg..66
grpck...66
The groups configuration files ..66
/etc/group...66
/etc/gshadow..66
Converting between password systems..67
Checking the consistency of password and group files ...67
pwck..67
grpck..68
Tips & Tricks...68
1.111.2 Tune the user environment and system environment variables.................................69
Shell configuration..69
Parameters defined for bash in configuration files ...69
Environment Variables..70
The directory /etc/skel/ ...71
1.111.3 Configure and use system log files to meet administrative and security needs72
The syslogd daemon...72
Format of /etc/syslog.conf ..72
Facilities...72
Levels..73
Destinations...73
General examples..74
Using a syslog server...74
Watching the real-time content of a log file ..74
Generating log messages from the command line or scripts ...74
Show the very start of kernel mesages at boot-up ...75
Stop generation of the -----MARK----- lines in the log files ...75
logrotate..75
Other possible log files (SuSE only) ..75
Log file viewer under X-Windows (kde) ...76
1.111.4 Automate system administration tasks by scheduling jobs to run in the future77
at and cron services ...77
The cron/crontab service ...77
Types of crontabs...77
Users crontabs..77
System wide crontab file: /etc/crontab...78
The /etc/cron.d/ directory ...78
The /etc/cron.{hourly,daily,weekly.monthly} directories ..78
File format of the user crontab...78
File format of the system crontab...78
Rules for CRONTAB files ..78
Crontab commands...79
Access control of cron scheduling service...79
Examples of user crontabs..80
The anacron service...80
The file /etc/anacrontab..81
The at spool service...81
How to launch an AT job..82
at options..82
Time formats...82
atq...82
atrm...83
AT command on one line (useful in scripts)..........................83
Files involved..83
Alternatives to at and Batch...83
1.111.5 Maintain an effective data backup strategy..................84
Types of backups...84
Full Backup...84
Differential Backup...84
Incremental Backup..84
Restoring data..84
Backup media devices files...85
Basic backup programs..85
tar (Tape ARchive)...85
dump..85
restore..86
cpio..87
dd..88
dd..89
1.111.6 Maintain system time...90
Time clocks under Linux..90
Clock control programs...90
Time settings and zones..90
Setting the time in Linux...91
hwclock...91
date..92
Network Time Service..93
ntupdate..94
tnprint or xntpd...94

Topic 112: Networking Fundamentals....................................95
Summary..95
1.112.1 Fundamentals of TCP/IP...96
OSI and TCP/IP models..96
TCP header..97
UDP header...97
IP Header..97
TCP/IP Network Tools..97
IP Addresses Classes..97
ICMP Messages...98
 Error Messages..98
 Information Messages..98
TCP/IP Services..99
1.112.3 TCP/IP configuration and troubleshooting..................100
Networking configuration files..100
Networking tools..101
Boot time scripts..102
1.112.4 Configure Linux as a PPP client..................................104
Connection protocols..104
PPP Protocol...104
Sequence of PPP connection build-up...................................104
 Modem connection build-up..104
LPIC 102 Preparation Guide

PPP Connection via login chat script.. 105
PPP Connection set-up.. 105
The dialer wvdial.. 106
Extra wvdial options for pppd... 106
pppd options.. 107
Content of /etc/ppp/options file.. 107
Shutting down a ppp connection... 107

Topic 113: Networking Services... 108
Summary.. 108
1.113.1 Configure and manage inetd, xinetd, and related services........ 109
 inetd... 109
 The configuration file inetd.conf.. 109
 xinetd... 110
 Advantages of xinetd over inetd... 110
 xinetd.conf.. 110
 tcpwrappers.. 111
 Wildcards.. 112
1.113.2 Operate and perform basic configuration of sendmail................. 114
 Mail system components.. 114
 SMTP Principle... 114
 sendmail configuration file... 114
 sendmail mailboxes.. 115
 Starting sendmail... 115
 Permanent Internet connection... 115
 Temporary Internet connection... 115
 Mail Aliases... 116
 Piping mails to programs.. 116
 Redirecting incoming mail... 116
 Outgoing mail server.. 117
 Files in /etc/mail/ Directory... 117
 Access control of incoming mail... 117
 Converting the sender name... 118
 Mail delivery control... 118
 Virtual mail domains or redirections.. 118
 Important Note.. 119
1.113.3 Operate and perform basic configuration of Apache................... 120
 Configuration files... 120
 Directives of Apache configuration file...................................... 120
 List of directives to remember.. 121
 Main server directives... 121
 Configuration of Virtual Servers.. 122
 Starting and stopping of the Apache main Daemon..................... 123
 The httpd daemon command line options.................................. 123
1.113.4 Properly manage the NFS, smb, and nmb daemons..................... 124
 NFS - Network File System... 124
 Mounting an NFS remote directory.. 124
 Setting-up the NFS server... 124
 NFS Server processes... 125
 UID and GID in NFS mounted shares.. 126
 Squashing UID and GID for ALL... 126
 Selecting which UIDs and GIDs will be squashed....................... 126
 Mounting share as root user... 126
 Simple shares with SAMBA.. 127
 smb.conf... 128
About this document

Version 3 by Alan McKinnon
I needed an exam preparation guide for my students once they had completed their Linux training and wanted to prepare to write the LPI level 1 exams. I found version 2 of this guide by Michel Bisson on the LPI website (http://www.lpi.org) and it suited my needs.

The content of this guide is essentially still the same as Michel wrote it. I have merely reformatted it, changed the order of some sections and fixed some typos and grammar errors.

Any queries about this guide should be directed to me:
alan@afribiz.co.za

This guide is re-released under the same terms as the original – see below.

Version 2 by Michel Bisson
This document was produced to help candidates pass the LPI 102 exam. I have created it essentially as a reference document and not as a tutorial. That's why in general, it doesn't have many explanations for the subjects treated. I usually use it in my courses as exam preparation. To my knowledge it covers the most important aspects of the topics asked in the exam, but it's layout and content organization is not perfect. Helped by this document and with enough practice, most of my students passed the exam. In some topics I have added more information than is needed for the LPI 102 exam. When in doubt, refer to the description of the requirements located at the beginning of each topic.

This is a free document. You may distribute, modify, or improve it for personal or commercial use as you wish.. I take no responsibility of any kind for the accuracy of the information in this document, nor for the success or failure of any participants in passing the exam.

I would appreciate it that if you make modifications to this document, you send me a copy of the new version.

Please let me know of any errors or inaccuracies in the information in this document, that would help me improve it. Feedback of any kind is welcome. If anybody wants to contribute to this document, you're very welcome, please contact me at
michel@linuxint.com

I hope it will help you to prepare for the LPI 102 exam and remember, that practice, practice, and more practice is the key.

Note: This guide is still incomplete.

The section 1.112.1 Fundamentals of TCP/IP is incomplete and might stay that way, at least for a while. This section needs to be expanded with explanations which I don't have time to write. At the moment there are only protocol references.
Regarding the LPI 102 Exam

This is a required exam for LPI certification Level 1. It covers basic system administration skills that are common across all distributions of Linux.

Each objective is assigned a weighting value. The weights range roughly from 1 to 10, and indicate the relative importance of each objective. Objectives with higher weights will be covered in the exam with more questions.

Approximate number of questions per topic

<table>
<thead>
<tr>
<th>Total number of questions</th>
<th>73</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Linux Kernel</td>
<td>5</td>
</tr>
<tr>
<td>Boot, Initialization, Shutdown and Runlevels</td>
<td>4</td>
</tr>
<tr>
<td>Printing on Linux</td>
<td>3</td>
</tr>
<tr>
<td>Documentation</td>
<td>6</td>
</tr>
<tr>
<td>Shells, Scripting, Programming and Compiling</td>
<td>6</td>
</tr>
<tr>
<td>Administrative Tasks</td>
<td>15</td>
</tr>
<tr>
<td>Networking Fundamentals</td>
<td>10</td>
</tr>
<tr>
<td>Networking Services</td>
<td>18</td>
</tr>
<tr>
<td>Linux Security</td>
<td>6</td>
</tr>
</tbody>
</table>

Weight per topic

<table>
<thead>
<tr>
<th>Total weights for all topics and sections</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 105 Kernel</td>
<td>7</td>
</tr>
<tr>
<td>1.105.1 Manage/Query kernel and kernel modules at runtime</td>
<td>4</td>
</tr>
<tr>
<td>1.105.2 Reconfigure, build, and install a custom kernel and kernel modules</td>
<td>3</td>
</tr>
<tr>
<td>Topic 106 Boot, Initialization, Shutdown and Runlevels</td>
<td>6</td>
</tr>
<tr>
<td>1.106.1 Boot the system</td>
<td>3</td>
</tr>
<tr>
<td>1.106.2 Change runlevels and shutdown or reboot system</td>
<td>3</td>
</tr>
<tr>
<td>Topic 107 Printing</td>
<td>3</td>
</tr>
<tr>
<td>1.107.2 Manage printers and print queues</td>
<td>1</td>
</tr>
<tr>
<td>1.107.3 Print files</td>
<td>1</td>
</tr>
<tr>
<td>1.107.4 Install and configure local and remote printers</td>
<td>1</td>
</tr>
<tr>
<td>Topic 108 Documentation</td>
<td>8</td>
</tr>
<tr>
<td>1.108.1 Use and manage local system documentation</td>
<td>4</td>
</tr>
<tr>
<td>1.108.2 Find Linux documentation on the Internet</td>
<td>3</td>
</tr>
<tr>
<td>1.108.5 Notify users on system-related issues</td>
<td>1</td>
</tr>
<tr>
<td>Topic 109 Shells, Scripting, Programming and Compiling</td>
<td>8</td>
</tr>
<tr>
<td>1.109.1 Customize and use the shell environment</td>
<td>5</td>
</tr>
<tr>
<td>1.109.2 Customize or write simple scripts</td>
<td>3</td>
</tr>
<tr>
<td>Topic 111 Administrative Tasks</td>
<td>21</td>
</tr>
<tr>
<td>1.111.1 Manage users and group accounts and related system files</td>
<td>4</td>
</tr>
<tr>
<td>1.111.2 Tune the user environment and system environment variables</td>
<td>3</td>
</tr>
</tbody>
</table>
LPIC 102 Preparation Guide

1.111.3 Configure and use system log files to meet admin and security needs
1.111.4 Automate system admin tasks by scheduling jobs to run in the future
1.111.5 Maintain an effective data backup strategy
1.111.6 Maintain system time

Topic 112 Networking Fundamentals

1.112.1 Fundamentals of TCP/IP
1.112.2 TCP/IP configuration and troubleshooting
1.112.4 Configure Linux as a PPP client

Topic 113 Networking Services

1.113.1 Configure and manage inetd, xinetd, and related services
1.113.2 Operate and perform basic configuration of sendmail
1.113.3 Operate and perform basic configuration of Apache
1.113.4 Properly manage the NFS, smb, and nmb daemons
1.113.5 Setup and configure basic DNS services
1.113.7 Set up secure shell (OpenSSH)

Topic 114 Security

1.114.1 Perform security administration tasks
1.114.2 Setup host security
1.114.3 Setup user level security

Tips on writing the exam

Most questions that require you to fill-in the blanks, don’t require any options. eg. cat or ls or cp (without options)

Use your experience and common sense to deciding what is important and what is not when studying. When in doubt, just read the description of the requirements located at the beginning of each topic again.

I recommend you create a checklist of topics for yourself and to review it once in a while. This can help avoid spending too much time in one subject at the expense of other important subjects.

Note the weight of each topic and spend the equivalent amount of time on it.

When doing the exam, I recommend you first answer the questions that you are sure of and then go back to the other ones afterwards.

Read the questions thoroughly and make sure you understand them well. Then read ALL the answers carefully before answering. I almost got caught a few times, answering something I was sure couldn’t be anything else, but when I read the other answers I saw which one was really the correct answer.

The exam is difficult and needs concentration and a good memory. It is not recommended to eat a heavy meal before the exam.

There is no need to rush through the exam and risk overlooking something. There is more than enough time to answer all the questions. When you’re finished and there is still time left, review your answers once.
Topic 105: Kernel

Summary

TODO
1.105.1 Manage/Query kernel and kernel modules at runtime

Description: Candidates should be able to manage and/or query a kernel and kernel loadable modules. This objective includes using command-line utilities to get information about the currently running kernel and kernel modules. It also includes manually loading and unloading modules as appropriate. It also includes being able to determine when modules can be unloaded and what parameters a module accepts. Candidates should be able to configure the system to load modules by names other than their file name.

Weight: 4

Key files, terms, and utilities include:
- `/lib/modules/kernel-version/modules.dep`
- `/etc/modules.conf` & `/etc/conf.modules`
- depmod
- insmod
- lsmod
- rmmod
- modinfo
- modprobe
- uname

Kernel types

In Linux kernel version 1.x.x the kernel is monolithic and must be recompiled for new features or device drivers to become available.

From Linux kernel version 2.x.x the kernel is modular and external modules can be compiled separately from the kernel and dynamically loaded or unloaded. They are called Kernel Modules.

Kernel options at boot time

The list of options supported by the current kernel can be found in:

```
/usr/src/linux/Documentation/kernel-parameters.txt.
```

Kernel Modules

The kernel modules are normally located in

```
/lib/modules/kernel-version/*
```

or

```
/lib/modules/$(uname -r)/*
```

where $(uname -r) = kernel version

Modules are files with the extension `.o` eg. serial.o

Modules can depend on other modules being loaded. The list of modules and their dependencies are in:

```
/lib/modules/kernel-version/modules.dep
```

This file is produced by running the command depmod. depmod will also generate various
Loading Modules

Modules can be loaded in 2 different ways:

Manually using the commands insmod and modprobe:

- `insmod modulename`
 Loads the module without checking for dependencies.
- `modprobe modulename`
 Checks the module's dependencies. Loads all the dependencies if needed and then loads the module.

Automatically via:

- The hotplug infrastructure (see LPI-101 Hardware section) for filesystems etc.
- The devfsd daemon and an alias entry in /etc/modules.conf. devfsd will load the module each time the device is accessed.

Syntax:

```
alias /dev/devicefile modulename
```

The kmod support in kernel (CONFIG_KMOD) and an alias entry in /etc/modules.conf. kmod uses modprobe to load modules.

Syntax:

```
alias DeviceInternalName modulename
alias block-major-NN[-nn] modulename
alias char-major-NN[-nn] modulename
```

Examples:

```
alias eth0 8139too
alias block-major-58 lvm-mod
alias char-major-10-134 apm
alias char-major-81 bttv
```

NN is The Device Major Number and the nn is the minor number.

```
ls -l /dev/apm_bios
    crw-rw---- 1 root root 10, 134 Jan 18 11:26 apm_bios
```

Entry in modules.conf:

```
alias char-major-10-134 apm
```

To create new devices in /dev directory use the following commands:

```
mknod -m modes /dev/newdev {c|b} majorNr. minorNr.
```

Example:

```
mknod -m 644 /dev/ttyS4 c 4 67
```

or use the script MAKEDEV:
cd /dev ; ./MAKEDEV ttyS

A runlevel script. The script can issue modprobe commands when the system boots-up to load modules ready to use.

Note: the files /etc/modules.conf and /etc/conf.modules are the same.
Which filename is used varies between distributions but modules.conf is newer.
For a module to dynamically link to the kernel, a kernel symbol table with memory pointers is used. Such table can be seen at /proc/ksyms.

Controlling modules

Note: The modulename never contains the '.o' extension of its filename.

lsmod

Lists the loaded modules. Same result as cat /proc/modules

Syntax:

 lsmod

insmod

Loads a module (no dependency check)

Syntax:

 insmod modulename [module_parameters]

Example:

 insmod ne io=0x300 irq=5

modprobe

Loads/Removes a module (with dependency check). modprobe expects an up-to-date modules.dep file, as generated by depmod.

Syntax:

 modprobe [-vcnqi0] module [module_params]
 modprobe [-l] [-t dir.] [-a] [wildcard]
 modprobe -r module1 [module2] ...
 (-r = remove)

Example:

 modprobe -t net *

 Automatic try all network card modules until success

Note: modprobe configuration file:(/etc/modprobe.conf) if exists.

rmmod

Removes(unloads) a module.

Syntax:
Topic 105: Kernel

 rmmod [-r] module1 [module2]
 -r = Removes recursively through dependencies

depmod

Determines module dependencies and writes modules.dep file.

Syntax:

 depmod [-abeFAn]
 (-n=Writes only to screen)

Example:

 depmod -av
 Checks all and writes modules.dep

Note: Run depmod -a after changes in /etc/modules.conf

modinfo

Prints information about a module.

Syntax:

 modinfo [-adlpn] [-F field] modulename
 -n = /path/filename of module's file
 -F --field Only print this field value, one per line.

Field names:

 author (-a)
 description (-d)
 license (-l)
 depends
 alias
 param (-p)

 Shows which parameters are supported.

Output format:

 option type (valid-values) description

Options [-adlp] are shortcuts for these above fields.

/etc/modules.conf (or /etc/conf.modules)

This file is used by kmod to load the right modules automatically when certain devices are accessed, or by modprobe to add needed options to modules and possibly run certain commands before and/or after loading and/or unloading modules. It can contain the following information:

Module Parameters (options)

Syntax:

 options modulename options
Topic 105: Kernel

Example:

```
options ne io=0x300 irq=5
```

Alias names for modules

Modules then has 2 names.

Syntax:

```
alias aliasname modulename
```

Example:

```
alias eth0 3c509
```

Makes it possible to do a `modprobe eth0` which has the same result as `modprobe 3c509`

Commands that should be run before and/or after a module is loaded

Syntax:

```
pre-install  modulename command
post-install modulename command
```

Example:

```
post-install bttv insmod tuner
```

Commands that should be run before and/or after a module is un-loaded

Syntax:

```
pre-remove  modulename command
post-remove modulename command
```

Example:

```
post-remove bttv rmmod tune
```

uname

Displays information about the current system.

Syntax:

```
uname options
```

Example:

```
uname -a
```

Shows all information in the following order:

- `-s, --kernel-name`
 - Print the kernel name
- `-n, --nodename`
 - Print the network node hostname
- `-r`
 - Print the current kernel release.

Example:
Topic 105: Kernel

 /lib/modules/$(uname -r)/...

 or

 /lib/modules/`uname -r`/...

-v, --kernel-version
 Print the kernel version (Build date)

-m, --machine
 Print the hardware machine name

-p, --processor
 Print the processor type

-i, --hardware-platform
 Print the hardware platform

-o, --operating-system
 Print the operating system
1.105.2 Reconfigure, build, and install a custom kernel and kernel modules

Description: Candidates should be able to customize, build, and install a kernel and kernel loadable modules from source. This objective includes customizing the current kernel configuration, building a new kernel, and building kernel modules as appropriate. It also includes installing the new kernel as well as any modules, and ensuring that the boot manager can locate the new kernel and associated files (generally located under /boot, see objective 1.102.2 for more details about boot manager configuration).

Weight: 3

Key files, terms, and utilities include:
- `/usr/src/linux/*`
- `/usr/src/linux/.config`
- `/lib/modules/kernel-version/*`
- `/boot/*`
- `make`

make targets: `config, menuconfig, xconfig, oldconfig, modules, install, modules_install, depmod`

Kernel source code

The kernel source code is normally located in `/usr/src/linux/*`. Normally this directory is a symbolic link to `/usr/src/kernelname/`. It contains also all the configuration files necessary to compile the kernel.

Configuring the kernel

Getting the source code and the current kernel configuration file

The source code is normally available from the current distribution disks or from the internet (www.kernel.org).

After installing the source code on the system, the kernel needs to be configured before being compiled. This configuration process will create the configuration file:

```
/usr/src/linux/.config
```

We have the choice of using an older configuration file as a template or create a totally new one from scratch (not recommended).

Before issuing any commands we need to change to the source code directory:

```
cd /usr/src/linux
```

Preparing the old .config for a new kernel source.

Copy the old `.config` to `/usr/src/linux/` directory and run the command:

```
make oldconfig
```

This will scan the file and add the new items that did not exist in the old kernel but are present in the new one.
Configuration programs

The following 3 commands start programs that read the .config file, allow the user to change the configuration and when finished, save the new configuration in the same .config file, replacing the original.

- make config
 Old style, just a series of questions.
- make menuconfig
 Text/Menu oriented.
- make xconfig
 Menu/Buttons Graphic Program

The purpose of kernel configuration is to specify:
Which features are supported in the new kernel.
Which modules will be either:
 - Integrated in the kernel or
 - Compiled as separate loadable modules or
 - Not compiled separately and not integrated in the kernel.

Preparing the compilation

Old binary files may be present in the source code tree, and make will not recompile these binaries. This can cause problems later so the kernel programmers advise all these old binaries be deleted to force make to compile fresh versions. Use this command:

- make clean

Before compiling the kernel, the dependencies file needs to be created. This file name is:

- /usr/src/linux/.depend

The command:

- make dep

Compiling the kernel

The long and complex compiling process can now be started by issuing one of the following commands:

- make zImage
 Old command to create a small kernel which will be saved as:
 /usr/src/linux/arch/i386/boot/zImage
- make zdisk
 Old command to save the kernel on a floppy as a boot floppy.
- make bzImage
 New command to create a big kernel which will be saved as:
 /usr/src/linux/arch/i386/boot/bzimage
Topic 105: Kernel

make bzdisk
 New command to save the kernel on a floppy as a boot floppy.

Compiling the modules
Compiling of modules is done with the following command: (long process)
 make modules

Installing the modules
Once compiled the modules need to be installed in the directory
 /lib/modules/kernelversion/
by issuing the command
 make modules_install
The command depmod -a will be run automatically.

Installing the new kernel
Once compiled the kernel and the system map file need to be copied to the /boot directory
and the boot manager configuration file modified to reflect the changes. This can be
achieved by issuing the following commands:
 cp /usr/src/linux/arch/i386/boot/bzimage /boot/vmlinuz
 cp /usr/src/linux/System.map /boot/System.map.$(uname -r)
This .map file is a list of kernel symbols used mostly for debugging purposes, same as /
proc/ksyms.

Make an initrd
If a new initrd file is needed then the following command will make it:
 mkinitrd Options-needed

Install the Boot Loader
If using LILO
 vi /etc/lilo.conf
 lilo
If using GRUB
 vi /boot/grub/menu.lst

All kernel compilation commands - short form
Install the kernel source in the /usr/src/linux/ directory
Copy the .config file from the current kernel to the /usr/src/linux/ directory
 make clean
 Deletes all old binary files from the source tree
Topic 105: Kernel

make oldconfig
 Uses the current .config and creates a new one
make xconfig
 or
make menuconfig
 or
make config
 Configure kernel options before compiling
make dep
 Creates the dependencies file .depend
make bzImage
 Compile the kernel
make modules
 Compile the modules
make modules_install
 Install modules in /lib/modules/kernelversion/
cp /usr/src/linux/arch/i386/boot/bzimage /boot/vmlinuz
 Copies the kernel to the /boot directory
cp /usr/src/linux/System.map /boot/System.map.$(uname -r)
 Copies the .map file to the /boot directory

If using an initrd file when booting:
 mkinitrd Options

If using LILO:
 vi /etc/lilo.conf
 lilo

If using GRUB:
 vi /boot/grub/menu.lst
 or
 vi /boot/grub/grub.conf

Safeguard against a faulty new kernel

In case the new kernel does not work correctly, it is advisable to save the old kernel. Rename the old kernel, its initrd, and System.map.$(uname -r), and its /lib/modules/kernelversion/ directory before copying the kernel or issuing the command make modules_install.

An alternative menu item in the boot manager configuration file to boot the older kernel is also advisable.
Topic 106: Boot, Initialization, Shutdown and Runlevels

Total weight for this topic 6

1.106.1 Boot the system...3
1.106.2 Change runlevels and shutdown or reboot system..................3

Summary

TODO
1.106.1 Boot the system

Description: Candidates should be able to guide the system through the booting process. This includes giving commands to the boot loader and giving options to the kernel at boot time, and checking the events in the log files.

Weight: 3

Key files, terms, and utilities include:
- `/var/log/messages`
- `/etc/conf.modules` or `/etc/modules.conf`
- `dmesg`
- `LILO`
- `GRUB`

Boot sequence and Runlevels

Here are the steps that Linux goes through from boot till login prompt:

1. BIOS initializes its devices
2. The Boot Loader on MBR of boot disk is read and executed
 At this point the Boot Loader may allow the user to enter Kernel options.
3. The Kernel and maybe initrd is fetched from the Floppy/Hard disk/CDROM.
4. The Kernel initializes its hardware environment, using modules compiled in the kernel.
5. The Kernel starts its first process: init (PID=1)
6. The Kernel tests the root (/) and other partitions as per fstab and mounts them.
7. The Kernel initializes more hardware using `/etc/modules.conf` and some boot scripts.
8. `init` reads its configuration file `/etc/inittab` and acts accordingly. `/etc/inittab` contains the list of processes that `init` should start, like console gettys, default runlevel, run level definitions, etc.
9. `init` starts the default run level scripts and passes control to the getty on virtual terminal 1 for user login.

 If xdm/kdm/gdm display manager is started as part of the default runlevel, then the display manager takes over control of the display for graphic user login.

Giving kernel options to the bootloader

Before the kernel loads it is normally possible to give kernel options on the boot loader command line. The can be SCSI adapter addresses, root partition, VGA terminal mode, default runlevel, etc.

The list of options supported by the current kernel can be found in

```
/usr/src/linux/Documentation/kernel-parameters.txt.
```

The kernel options used are always readable from the file

```
/proc/cmdline
```

Example of options given to LILO, GRUB, SYSLINUX or LOADLIN bootloaders:

```
LILO boot: linux aha152x=0x300,10,7
```
Means that the Adaptec SCSI adapter is at address 0x300 IRQ 10 and SCSI-ID 7

Kernel options that must always be used can be entered in the bootloader’s configuration file.

LIL0
under the keyword: append=
append=vga=791 hdc=ide-scsi splash=verbose acpi=off

GRUB
on the kernel definition line:
kern (hd0,2)/boot/vmlinuz.2.4.20 root=/dev/hda3 vga=791 splash=verbose

Note: Options are separated with a space but continuous within the option.(see above)

/etc/modules.conf (or /etc/conf.modules)

Kernels can be of 2 types:

Monolithic: All device drivers are compiled into the kernel.
Modular: Some device drivers are compiled as loadable modules.

For modular kernels the modules can be loaded/unloaded manually or automatically. The parameters needed to define the addresses, irq, dma, etc. for a module, as well as their system alias names, can and should be written in the file:

/etc/modules.conf
new name, or
/etc/conf.modules
old name

The syntax of these parameters is explained in detail in the previous topic no. 1.105.1

Boot Log files

As the kernel boots it saves its log messages in an internal buffer which is readable with the command dmesg

After the syslogd daemon logging system has been started, the standard file where most of the system messages including kernel messages are stored is called

/var/log/messages

The command

tail -f /var/log/messages

allows you to read the last 10 lines of the log file, refreshing it once a second.

/etc/lilo.conf parameters

The /etc/lilo.conf file contains options and kernel image information. Popular LILO directives are:

boot
Topic 106: Boot, Initialization, Shutdown and Runlevels

The name of the hard disk partition that contains the boot sector.

image
 Refers to a specific kernel file.
install
 The file installed as the new boot sector.
label
 Provides a label, or name, for each image.
map
 Directory where the map file is located.
prompt
 Prompts the user for input (such as kernel parameters or runlevels) before booting.
read-only
 The root filesystem should initially be mounted read-only.
root
 Used following each image, this specifies the device that should be mounted as the / (root) directory.
timeout
 The amount of time, in tenths of a second, that the system waits for user input.

/boot/grub/menu.lst parameters

TODO
1.106.2 Change runlevels and shutdown or reboot system

Description: Candidates should be able to manage the runlevel of the system. This objective includes changing to single user mode, shutdown or rebooting the system. Candidates should be able to alert users before switching runlevel, and properly terminate processes. This objective also includes setting the default runlevel.

Weight: 3

Key files, terms, and utilities include:
- /etc/inittab
- shutdown
- poweroff
- init

Runlevels

A runlevel is a software configuration of the system which starts a selected group of processes. The default runlevel is defined in /etc/inittab. It looks like this:

```
id:5:initdefault
```

Will start the system in runlevel 5

Runlevels are identified by: 0 1 2 3 4 5 6 S and s

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Halt</td>
</tr>
<tr>
<td>1</td>
<td>Single user (root) login</td>
</tr>
<tr>
<td>2 to 5</td>
<td>Usually defines some kind of multiuser state, including an X login screen - depends on the Linux distribution.</td>
</tr>
<tr>
<td>6</td>
<td>Reboot</td>
</tr>
<tr>
<td>S & s</td>
<td>Scripts to run before entering runlevel 1 (single login).</td>
</tr>
</tbody>
</table>

The /etc/init.d directory

This directory contains initialization scripts to start and stop system services and links controlling the boot process for many Linux distributions:

rc.sysinit	The startup script launched by init at boot time.
rc.local	A script for local startup customizations, started automatically after the system is running.
rc	A script used to change runlevels.
rc0.d through rc6.d	Directories containing symlinks to scripts in /etc/init.d.

Names of the links are in the format

```
[K|S][nn][init.d_name]:
```

K and S prefixes mean kill and start, respectively.

The script names starting with S are run with the argument start, and the ones with K are run with the argument stop.
Upon entering a new runlevel:
K scripts are run if their equivalent S scripts had been started in the previous runlevel,
S scripts are run if they had not already been started in the previous runlevel.

Therefore on each change of runlevel, the rc script checks the scripts of the previous and
new runlevels to determine which K or S scripts should be run.
nn is a sequence number controlling startup or shutdown order.
init.d_name is the name of the script being linked.

Displaying the current runlevel
The command runlevel displays the Previous ('N' if None) and the current runlevel
```
runlevel
N 3
```
The previous runlevel was None (After Booting) and present: 3

Changing the runlevel
```
telinit <newrunlevel>
```
Changes the current runlevel.
/sbin/telinit is linked to/sbin/init. This means one can also use init instead. It takes a one-
character argument and signals the init process to perform the appropriate action. The
following arguments serve as directives to telinit:
```
<table>
<thead>
<tr>
<th>Arg</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1,2,3,4,5 or 6</td>
<td>switch to the specified run level.</td>
</tr>
<tr>
<td>a,b,c</td>
<td>process only those /etc/inittab file entries having runlevel a,b or c.</td>
</tr>
<tr>
<td>Q or q</td>
<td>re-examine the /etc/inittab file.</td>
</tr>
<tr>
<td>S or s</td>
<td>switch to single user mode.</td>
</tr>
</tbody>
</table>
| U or u | re-execute itself (preserving the state). The /etc/inittab file is not re-
| | examined. Run level should be one of Ss12345, otherwise request will be silently ignored. |
```
telinit (or init) can also tell the init process how long it should wait between sending
processes the SIGTERM and SIGKILL signals when shutting down a runlevel service. The
default is 5 seconds, but this can be changed with the -t sec option.

/etc/inittab file format
Each line starting with '#' is a comment.
Each entry uses one line.
Each entry’s syntax is as follows:
```
id:runlevels:action:process
```
```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>A unique sequence of 1-4 characters which identifies an entry in inittab. Note: For gettys or other login processes, the id field should be the tty suffix of the corresponding tty, e.g. 1 for tty1. Otherwise, the login accounting might not work correctly.</td>
</tr>
</tbody>
</table>
```
runlevels	Lists the runlevels for which the specified action should be taken. The runlevels field may contain multiple characters for different runlevels. For example, 123 specifies that the process should be started in runlevels 1, 2, and 3.
action | Describes which action should be taken (see below).
process | Specifies the process (or command) to be executed.

Most common actions:

<table>
<thead>
<tr>
<th>action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>respawn</td>
<td>The process will be restarted whenever it terminates (e.g. getty).</td>
</tr>
<tr>
<td>wait</td>
<td>The process will be started once when the specified runlevel is entered and init will wait for its termination.</td>
</tr>
<tr>
<td>once</td>
<td>The process will be executed once when the specified runlevel is entered.</td>
</tr>
<tr>
<td>boot</td>
<td>The process will be executed during system boot. The runlevels field is ignored.</td>
</tr>
<tr>
<td>bootwait</td>
<td>The process will be executed during system boot, while init waits for its termination (e.g. /etc/rc). The runlevels field is ignored.</td>
</tr>
<tr>
<td>off</td>
<td>This does nothing.</td>
</tr>
<tr>
<td>initdefault</td>
<td>An initdefault entry specifies the default runlevel to use. If not specified, init will ask for a runlevel on the console. The process field is ignored.</td>
</tr>
<tr>
<td>ctrlaltdel</td>
<td>The process will be executed when init receives the SIGINT signal. This means that someone on the system console has pressed the CTRL-ALT-DEL key combination. Typically one wants to execute some sort of shutdown either to get into single-user level or to reboot the machine. Often used to reboot the machine in many distributions.</td>
</tr>
</tbody>
</table>

See man inittab for more info on other actions like:

- sysinit, powerwait, powerfail, powerokwait, powerfailnow, resume, kbrequest, ondemand.

Shutting down the system properly.

Before the system is turned off, it needs to shut down every current runlevel service properly and unmount all filesystems. This is done with these commands:

```
init 0
shutdown -h now
halt
poweroff
```

Shut down the system.

```
init6
shutdown -r now
reboot
```

Reboot the system. If /etc/inittab is set accordingly, pressing <Ctrl-Alt-Del> will also reboot the system.

```
shutdown -c
```

Cancels the already scheduled shutdown.
shutdown command

Syntax:

```
shutdown [options] time
```

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>Cancels a shutdown</td>
</tr>
<tr>
<td>-f</td>
<td>Will not run fsck on the reboot</td>
</tr>
<tr>
<td>-F</td>
<td>This WILL run fsck on reboot</td>
</tr>
<tr>
<td>-h</td>
<td>Halts system after shutdown</td>
</tr>
<tr>
<td>-k</td>
<td>Sends warning / does not shutdown</td>
</tr>
<tr>
<td>-n</td>
<td>Shuts down without calling init</td>
</tr>
<tr>
<td>-r</td>
<td>Reboots, does not halt</td>
</tr>
<tr>
<td>-t {Seconds}</td>
<td>Delay time after killing process (before init)</td>
</tr>
</tbody>
</table>

Time format:

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>now</td>
<td>Well...NOW!</td>
</tr>
<tr>
<td>+2m</td>
<td>In 2 minutes</td>
</tr>
<tr>
<td>4</td>
<td>In 4 minutes</td>
</tr>
<tr>
<td>hh:mm</td>
<td>At the specified time</td>
</tr>
</tbody>
</table>

Command access rights:

The file `/etc/shutdown.allow` may contain user names (one per line) who have permission to run the shutdown command.
Topic 107: Printing

Total weight for this topic 3

1.107.2 Manage printers and print queues.................................1
1.107.3 Print files..1
1.107.4 Install and configure local and remote printers...............1

Summary

TODO
1.107.2 Manage printers and print queues

Description: Candidates should be able to manage print queues and user print jobs. This objective includes monitoring print server and user print queues and troubleshooting general printing problems.

Weight: 1

Key files, terms, and utilities include:

- `/etc/printcap`
- `lpc`
- `lpq`
- `lprm`
- `lp`

How lp printing works

At boot time, `lpd` is run. It waits for connections and manages printer queues.

A user submits a job with the `lpr` command or, alternatively, with an `lpr` front-end like GPR, PDQ, etc. `lpr` contacts `lpd` over the network (localhost or remote) and submits both the user's data file (containing the print data) and a control file (containing user options).

When the printer becomes available, the main `lpd` spawns a child `lpd` to handle the print job.

The child `lpd` executes the appropriate filter(s) (as specified in the `if` attribute in `/etc/printcap`) for this job and sends the resulting data on to the printer.

The `lp` system was originally designed when most printers were line printers - that is, people mostly printed plain ASCII. By placing all sorts of magic in the `if` filter, modern printing needs can be met with `lpd` (well, more or less; many other systems like CUPS do a better job).

Print related commands

- `lpc`
 - Printer control
- `lpd`
 - Print daemon - should be started as a runlevel service.
- `lpq`
 - Print spool control. Display the print jobs in the print queue
- `lpr`
 - The print spooler. Sends print jobs to `lpd`
- `lprm`
 - Print job removal. Erases print jobs from the print queue
- `pac`
 - Print account report generation
Principle of print queues under Linux

The spool is a directory where print jobs are saved, then erased when finished. For each print job there are 2 files:

<table>
<thead>
<tr>
<th>Control file</th>
<th>Name starts with cf. Contains information about the print job.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data file</td>
<td>Name starts with df. Contains the actual data to send to the printer.</td>
</tr>
</tbody>
</table>

This directory is watched by a print queue daemon and jobs are printed sequentially if the printer is available. If the printer is not available for a while, the spool files will remain there until the printer becomes available again and the jobs are printed.

Definition of print queues in /etc/printcap

Each printer gets its own spool directory:

/var/spool/lpd/printername

The permissions of this directory are:

drw---S---

The printer has also a queue control lock file:

lpd.lock.printername.printer

Each recognized local or network printer queue has an entry in /etc/printcap. These entries are explained in more detail in section 1.107.4.

lp|hplaser|PS;r=600x600;q=medium;c=gray;p=a4;m=auto:
:sd=/var/spool/lpd/lp:
:lf=/var/spool/lpd/log:
.................

Note:

lp is the default printer queue.
hplaser is the default name for the printer queue.
The sd=/var/.... (spool directory) defines the print queue directory.
The lf=/var/.... (log file) defines the printer log file.

Other files

/etc/ldpd.perml
Permissions database. Affects the behavior of lpd, lpc and lpq. Controls access to local and remote print jobs.

/etc/ldpd.conf
Extensive configuration file for the lpd daemon.

Controlling the print queues

Command syntax:

lpc {command} {value}

Commands
Topic 107: Printing

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Prints help about a command</td>
</tr>
<tr>
<td>Abort</td>
<td>Kill active print daemon</td>
</tr>
<tr>
<td>Clean</td>
<td>Removes unprintable files</td>
</tr>
<tr>
<td>Disable</td>
<td>Turn off printers queue</td>
</tr>
<tr>
<td>Down</td>
<td>Turn off printers queue</td>
</tr>
<tr>
<td>Enable</td>
<td>Turn on printers queue</td>
</tr>
<tr>
<td>Help</td>
<td>Prints help about a command</td>
</tr>
<tr>
<td>Restart</td>
<td>Shuts down current session - starts a new one</td>
</tr>
<tr>
<td>Start</td>
<td>Turns printing ON</td>
</tr>
<tr>
<td>Status</td>
<td>Gives a status of queue</td>
</tr>
<tr>
<td>Stop</td>
<td>Shuts off the spooling daemon</td>
</tr>
<tr>
<td>Topq</td>
<td>Moves jobs to top of queue</td>
</tr>
<tr>
<td>Up</td>
<td>Turns ON printer queue</td>
</tr>
</tbody>
</table>

If lpc is used without parameters then lpc goes into 'lpc command line' mode:

Example (italics are the responses from lpc)

```
lpc
lpc> up lp
(result)
lp:
    printing enabled
daemon started
```

Displaying print jobs

Command syntax:
```
lpq [options] [job] [user]
```

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-P printqueue</td>
<td>Name of print queue(printqueue) jobs to list. The default is the default print queue(lp).</td>
</tr>
<tr>
<td>-l</td>
<td>Requests a more verbose (long) reporting format.</td>
</tr>
<tr>
<td>-a</td>
<td>Reports jobs on all printers</td>
</tr>
</tbody>
</table>

This command also shows the status and warnings of the print queue.

Deleting print jobs

Command syntax:
```
lprm [options] job [user]
```

Options:
Table of contents:

- **printqueue**
 - Name of print queue (printqueue) jobs to delete. The default is the default print queue (lp).
 - Single dash (-) will remove all print jobs.
 - (Optional). Deletes all print jobs of a user. eg. lprm – harry

Important points

Make sure you are familiar with the following:

- lpq, lprm and lpc commands and options.
- The option -P is used in lpq, lpr and lpc to specify the printer's name.
- Lpc's can work off the command line or in interactive mode.
- Lpc's syntax:
 - it needs the printer(s) to be specified: all or printer
 - enable and disable controls the incoming jobs to the printing queue
 - stop and start control the sending of printing jobs to the printer
 - and lpd's child processes.
 - up and down controls all of the above.

<table>
<thead>
<tr>
<th>-P</th>
<th>printqueue</th>
<th>Name of print queue (printqueue) jobs to delete. The default is the default print queue (lp).</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Single dash (-) will remove all print jobs.</td>
<td></td>
</tr>
<tr>
<td>user</td>
<td>(Optional). Deletes all print jobs of a user. eg. lprm – harry</td>
<td></td>
</tr>
</tbody>
</table>
1.07.3 Print files

Description: Candidates should be able to manage print queues and manipulate print jobs. This objective includes adding and removing jobs from configured printer queues and converting text files to postscript for printing.

Weight: 1

Key files, terms, and utilities include:
- lpr
- lpq
- mpage

Controlling print queues

Sending a print job:

lpr submits files for printing. Files named on the command line are sent to the named printer (or the system default destination if no destination is specified). If no files are listed on the command-line lpr reads the print file from the standard input. In fact lpr doesn't send the print job directly to the printer, it sends it to the lpd daemon.

Command syntax:

```
lpr [options] FileToPrint
```

This utility prints given files. For its printer destination, 2 environment variables may be used: LPDEST or PRINTER.

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-P printqueue</td>
<td>Name of print queue(printqueue) to use. The default is the default print queue(lp).</td>
</tr>
<tr>
<td>-#n</td>
<td>Number(n) of copies to print (from 1 to 100).</td>
</tr>
<tr>
<td>-Kn</td>
<td>Same as above -#n</td>
</tr>
<tr>
<td>-Q spoolqueue</td>
<td>Selects a different spool queue from default.</td>
</tr>
<tr>
<td>-R remoteacct</td>
<td>Identifies the remote account name when sending remote jobs.</td>
</tr>
<tr>
<td>-w width</td>
<td>Defines the width of the page in characters.(default=72)</td>
</tr>
<tr>
<td>-h "header"</td>
<td>Defines the page header to print instead of the default.</td>
</tr>
<tr>
<td>-l lines</td>
<td>Defines the number of lines per page.(default=66)</td>
</tr>
<tr>
<td>-C string</td>
<td>Replace system name on the burst page with string</td>
</tr>
<tr>
<td>-J name</td>
<td>Replace the job name on the burst page with name. If omitted, uses the first file's name.</td>
</tr>
<tr>
<td>-T title</td>
<td>Use title as the title when using pr.</td>
</tr>
<tr>
<td>-i [cols]</td>
<td>Indent the output. Default is 8 columns. Specify number of columns to indent with the cols argument.</td>
</tr>
<tr>
<td>-d</td>
<td>Double the line spacing.</td>
</tr>
<tr>
<td>-m</td>
<td>Send mail to notify of completion.</td>
</tr>
<tr>
<td>-b</td>
<td>Does not print a banner or a header.</td>
</tr>
</tbody>
</table>
Topic 107: Printing

<table>
<thead>
<tr>
<th>-F</th>
<th>Specifies one of the following print formats:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Fb</td>
<td>File has binary content and should be processed anyway.</td>
</tr>
<tr>
<td>-Fd</td>
<td>Accept the file as being written by the tex editor.</td>
</tr>
<tr>
<td>-Fn</td>
<td>Accept output from troff</td>
</tr>
<tr>
<td>-Ft</td>
<td>Same as -n</td>
</tr>
<tr>
<td>-Fp</td>
<td>Use pr to format the file before printing.</td>
</tr>
<tr>
<td>-Fr</td>
<td>Deletes the file after spooling.</td>
</tr>
<tr>
<td>-Fv</td>
<td>Assume a raster image.</td>
</tr>
</tbody>
</table>

See man lpr for more options.

Print engine lpd daemon

This daemon process is normally started at boot time and watches the print queues for incoming printing jobs.

Syntax for lpd:

```
lpd [options] [port]
```

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-D dbglvl</td>
<td>Sets debug level and flags eg. -D10,remote=5 sets debug level to 10, remote flag = 5</td>
</tr>
<tr>
<td>-F</td>
<td>Run in foreground, log to STDERR</td>
</tr>
<tr>
<td>-L logfile</td>
<td>Append log information to logfile</td>
</tr>
<tr>
<td>-V</td>
<td>Show version info</td>
</tr>
</tbody>
</table>

Special file types converters for printing.

mpage

Reads a text or Postscript file and prints multiple pages on one sheet. The difference from the above tools is that it reads PostScript as well, including graphics.

a2ps

Converts ASCII text files to Postscript format. Default options results in:
Print 2 pages on one sheet of paper
Each page is framed incl. filename, username and print date.

Options:

- **-p** printername
 Sends the output to a printer
- **-o** filename
 Saves the output to a file.
- **-o -**
 Sends the output to to STDOUT (standard output).
Topic 107: Printing

-E

Pretty-Printing for C code, Bash scripts, etc.

enscript

Same functions as a2ps plus a few more including:

Control of the output - Pretty Printing

Can also output : HTML, ANSI and RTF

Can output 1,2,4,or 8 pages per printed page.

Important points

Make sure that you understand the functions of lpr and lpd.

lpr sends print jobs to lpd.

lpd send the jobs to the printer.

Also familiarize yourself with the options used with lpr.
Topic 107: Printing

1.107.4 Install and configure local and remote printers

Description: Candidate should be able to install a printer daemon, install and configure a
print filter (e.g.: apsfilter, magicfilter). This objective includes making local and remote
printers accessible for a Linux system, including postscript, non-postscript, and Samba
printers.

Weight: 1

Key files, terms, and utilities include:
/etc/printcap
/etc/apsfilter/*
/var/lib/apsfilter/*
/etc/magicfilter/*
/var/spool/lpd/*
lpd

Printer definitions file: /etc/printcap

This file can contain the definitions of local and remote printers. Entries in this file are in
reality only one line per printer, the '\' at the end of each line simulates the single line like
in bash scripts. Except for the name of the printer each item starts and ends with a ':'. See
examples below:

Keywords:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lp</td>
<td>ljet4:</td>
</tr>
<tr>
<td>:af=Filename:</td>
<td>Account File for the printer</td>
</tr>
<tr>
<td>:if=FilterName:</td>
<td>Input Filter Name</td>
</tr>
<tr>
<td>:lp=PrinterDevice:</td>
<td>Local Printer device, such as /dev/lp0.</td>
</tr>
<tr>
<td>:mx=Max_Size:</td>
<td>Maximum size of a print job in blocks. 0 = no limit</td>
</tr>
<tr>
<td>:rm=RemMachineName:</td>
<td>Remote Machine. Printer server name if used remotely.</td>
</tr>
<tr>
<td>:rp=RemPrinter:</td>
<td>Remote Printer Name on the remote machine.</td>
</tr>
<tr>
<td>:sh:</td>
<td>Suppress Header pages for a single printer definition.</td>
</tr>
</tbody>
</table>

/etc/printcap examples

lp|hplaser:\
 :lp=/dev/lp0:\
 :sd=/var/spool/lp:\
 :mx#0:\
 :lf=/var/spool/lp/hp-log:

Here (above) the printer device is local (:lp=/dev/lp0:).

The next example doesn't use the keyword :lp=, instead it uses :rm= for remote:
Using Filters

Filters are used to convert different document formats (txt, HTML, Postscript, graphics, etc) into Postscript format (ps). It is then passed on to GhostScript which (if needed) converts it into a raster format (Printer-specific data) and then sends it to the printer.

Filters look at the 'Magic Code' at the beginning of a document to determine the type of file. If it is already a PostScript document it will be sent to GhostScript without changes.

Two of the most popular filters used in Linux (that we need to know for the LPI-102) are Apsfilter and Magicfilter.

apsfilter

Its configuration file:

/etc/apsfilter/apsfilterrc

Its configuration tool:

apsfilterconfig

Its location:

/usr/lib/apsfilter/filter/*

This popular filter program accepts files in the PostScript, TeX DVI, ASCII, PCL, GIF, TIFF, Sun Raster files, FIG, PNM (pbmplus), HTML, and PDF formats. It sends its own output (in .ps format) to GhostScript. Here are some printcap configuration examples using apsfilter:

```plaintext
```
As you can see, the installation creates three printer definitions, each with multiple aliases and each using the same output device. This allows some degree of control over the filter, because the selection of the queue implies specific print parameters. The first definition (ascii) is intended to allow the user to force the printing of plain text even if the data is a PostScript program. The second entry (lp, the default) is the standard magic APSfilter, which tries to identify the data type itself. The last definition allows users to force APSfilter to send raw data directly to the printer with no intervention. This can be useful, for example, if you wish to print a PostScript file’s programming instructions.

Magicfilter

The magicfilter is expandable and automatic. It loads the proper filter dynamically according to the Magic-Number located the beginning of the data to print.

Since the printcap file doesn’t support options, the entry if= in /etc/printcap should point to one of the pre-configured scripts for the appropriate printer type in the /etc/magicfilter/ directory. Each one of these scripts starts with the line:

```
#!/usr/sbin/magicfilter
```

Which will run (for setting magicfilter options) using the magicfilter script interpreter. The format of the scripts is:

```
FileOffset MagicNumber WhatToDo
0 GIF87a pipe /usr/bin/gif2pnm 2>/dev/null
0 GIF98a pipe /usr/bin/gif2pnm 2>/dev/null
```

Which tells magicfilter that if the FileToPrint starts with the characters GIF87a or GIF98a then convert the file to a PNM format before sending it to GhostScript.

To facilitate the process of configuring these scripts, a configuration script is provided with the magicfilter called magicfilterconfig.

Here is an example of an entry of the magicfilter in printcap:

```
```

```
```

The pw#, pl#, px# and mx# are settings of:
Linking to a remote Windows print server

It is possible to point the printing destination to a printer share installed on a remote Windows or Samba Print Server. Since the InputFilter entry (if=) in printcap is used to start a particular program to handle the printing, a script using the smbclient program can be used to send the job to an SMB Print server. For this to work we need to install the package containing smbclient. Here we call the script smbprint.

```
lp2|remote-smbprinter:\
   :lp=/dev/null:sh:
   :sd=/var/spool/lp2:\n   :if=/usr/local/sbin/smbprint:
```

This script (/usr/local/sbin/smbprint) must have the following entries:

- Host Name/IP of the print server
- Printername on the server
- Username and password on the printer server

Syntax:
```
/usr/bin/smbclient //Server/PrinterName Password -U UserName
```

Example
```
/usr/bin/smbclient //prntsrv1/lpdj4 mot3tl6i -U barbara
```

lpd print Daemon

For the printing system to work a printing process must be started. In this case the lpd daemon should be started, normally at boot time.

Once started it reads/etc/printcap and watches the print queues in /var/spool/lpd/printername/

Controlling which host is allowed to use the printers is defined in: /etc/hosts.lpd

Syntax:
```
lpd [-FV] [-D dbglvl] [-L logfile]
```

Options:
```
-D dbglvl
Sets debug level and flags
Example/:
   -D10, remote=5
       sets debug level to 10, remote flag = 5
-F
Run in foreground, log to STDERR
```
Topic 107: Printing

- L logfile
 Append log information to logfile
- V
 Show version info

See man lpd for more info.
Topic 108: Documentation

Total weight for this topic 8

1.108.1 Use and manage local system documentation .. 4
1.108.2 Find Linux documentation on the Internet ... 3
1.108.5 Notify users on system-related issues ... 1

Summary
TODO
1.108.1 Use and manage local system documentation

Description: Candidates should be able to use and administer the man facility and the material in /usr/share/doc/. This objective includes finding relevant man pages, searching man page sections, finding commands and man pages related to them, and configuring access to man sources and the man system. It also includes using system documentation stored in /usr/share/doc/ and determining what documentation to keep in /usr/share/doc/.

Weight: 4

Key files, terms, and utilities include:
- MANPATH
- man
- apropos
- whatis

Different sources of help

- man, xman
- info, xinfo
- /usr/share/doc/howto
- /usr/share/doc/packages

Linux Documentation Project which is responsible for:
- ManPages
- FAQs
- HOWTOs
- Tutorials

<table>
<thead>
<tr>
<th>Finding Help locally</th>
<th>Finding Help using Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>apropos theme</td>
<td>Linux Document Project at www.tldp.org</td>
</tr>
<tr>
<td>whatis command</td>
<td>Internet Linux sites. eg. www.linux.org</td>
</tr>
<tr>
<td>man [type] command</td>
<td>Internet search engines eg. www.google.com/linux etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Docs in /usr/share/doc/*</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpm -qi packagename</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FAQs documents (Frequently Asked Questions)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HowTO's in /usr/share/doc/howto</th>
</tr>
</thead>
</table>

apropos topic

Searches for the topic in the keywords and short descriptions sections, of the whatis database (/usr/share/man/whatis) and displays them all. Same result as:

man -k topic

whatis command

Searches the man page keywords and presents the first short description of the command. The exact command must be found otherwise nothing is displayed. It
displays the single line description found in the manpage. It first searches in the man page index and then its own database if the man page index file is not found.

Note: The whatis database is
/usr/man/whatis or
/usr/share/man/whatis or
/var/cache/man/whatis
It is created/updated using the makewhatis command.

whatis -r topic

Same as above apropos except the topic is searched only in the keywords and not in the short descriptions. It shows all pages found. Same result as man -f topic

Man pages

Man pages (man command) are used to look up certain commands and their use. Man pages are divided in 9 types(sections).

Syntax:

```
man [options] [type] commandname
```

type (optional) can be one of

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Executable programs or shell commands</td>
</tr>
<tr>
<td>2</td>
<td>System calls (functions provided by the kernel)</td>
</tr>
<tr>
<td>3</td>
<td>Library calls (functions within program libraries)</td>
</tr>
<tr>
<td>4</td>
<td>Special files (usually found in /dev)</td>
</tr>
<tr>
<td>5</td>
<td>File formats, configuration files and conventions eg. /etc/passwd</td>
</tr>
<tr>
<td>6</td>
<td>Games</td>
</tr>
<tr>
<td>7</td>
<td>Miscellaneous (including macro packages and conventions), e.g. man(7), groff(7)</td>
</tr>
<tr>
<td>8</td>
<td>System administration commands (usually only for root)</td>
</tr>
<tr>
<td>9</td>
<td>Kernel routines [obsolete]</td>
</tr>
</tbody>
</table>

Note: When no type is given, the type search sequence until one is found is:

```
1,8,2,3,4,5,6,7,9
```

Files, programs and variables

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/bin/mandb</td>
<td>Program to create or update the man page caches.</td>
</tr>
<tr>
<td>MANPATH</td>
<td>Contains the PATHs where mandb looks while indexing pages.</td>
</tr>
<tr>
<td>/usr/bin/manpath</td>
<td>Program to display the paths searched for man pages.</td>
</tr>
<tr>
<td>/etc/manpath.config</td>
<td>mandb configuration file.</td>
</tr>
<tr>
<td>/usr/share/man/index.(bt</td>
<td>db</td>
</tr>
<tr>
<td>/var/cache/man/index.(bt</td>
<td>db</td>
</tr>
</tbody>
</table>
Locations of man pages

<table>
<thead>
<tr>
<th>Path</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/man/*</td>
<td>Old location of man pages</td>
</tr>
<tr>
<td>/usr/share/man/*</td>
<td>A global manual page hierarchy.</td>
</tr>
<tr>
<td>/usr/local/man/*</td>
<td>Extra man pages for user commands</td>
</tr>
<tr>
<td>/usr/local/share/man/*</td>
<td>Extra man pages for user commands</td>
</tr>
<tr>
<td>/usr/X11R6/man/*</td>
<td>X11 Applications man pages</td>
</tr>
<tr>
<td>/opt/gnome/man/*</td>
<td>Gnome Desktop applications man pages</td>
</tr>
<tr>
<td>/opt/kde3/man/*</td>
<td>KDE Desktop applications man pages</td>
</tr>
<tr>
<td>/usr/openwin/man/*</td>
<td>Openwindows Desktop applications man pages</td>
</tr>
<tr>
<td>/var/cache/man/*</td>
<td>catman pages files and index of manpages</td>
</tr>
</tbody>
</table>

Note: Most man pages in these directories are classified in subdirectories by their respective type (sections) as in/man1//man2/

The man pages are normally in compressed (.gz) GROFF source format. They are decompressed automatically before the page is displayed.

The cat pages are preformatted text man pages including the formatting characters. They are normally saved in .../cat1 .../cat2 directories

manpath

The program manpath can be used to display the PATH used to search for man pages. If MANPATH is set, manpath will simply display its contents and issue a warning. This program is also used to determine the paths to search if the MANPATH variable is not set.

```
manpath

manpath: warning: $MANPATH set, ignoring /etc/manpath.config
    /usr/local/man:/usr/share/man:/usr/man:/usr/X11R6/man:/usr/openwin/man
```

If not, manpath will determine a suitable manual page hierarchy search path from the configuration file (/etc/manpath.config) and display the results.

Pager

The man pages use the pager (usually /bin/less) to display the page. It can be changed by changing the environment variable PAGER.

```
export PAGER=/bin/more or export PAGER=/bin/nroff
```

or

```
man -P"less -X" command
```

Uses less -X as Pager. This displays the man page but leaves the X-terminal content as-is when leaving man.

man command examples

```
man n command
```

Display the man page for the command in the section n

Examples:
man 8 mount
 displays the mount administration command
man 2 mount
 displays the mount system call
man -a command

Display all the man page for the command. They are displayed one after the other, each one being terminated with 'q'.

man -k command

Same as apropos. Displays all the man titles subjects relating to this topic. The command is searched in the keywords as well as in the short descriptions

Example:
 man -k isdn

man pages filters and GUIs

GUIs
 tkman and xman

Filters
 rman

Filters examples

```bash
zcat $(whereis -m ls | cut -d" " -f2) | rman -n ls -f HTML > ls.1.html
  Convert man page for ls to HTML format
zcat $(whereis -m ls | cut -d" " -f2) | rman -n ls -f HTML | \ w3m -T text/html
  Show it in w3m browser instead of saving it as a file
zcat $(whereis -m ip | cut -d" " -f2) | groff -mandoc | \ ps2pdf - - > man.ls.1.pdf
  Convert man page for ip to PDF format
zcat $(whereis -m ip | cut -d" " -f2) | groff -mandoc | \ ps2pdf - - | gv -
  Show it in GhostView instead of saving it in a file
man command | col -b
  Convert a man page to plain text format (plain ASCII) without escape characters, character formatting or colors etc.
```

man command options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a, --all</td>
<td>find all matching manual pages.</td>
</tr>
<tr>
<td>-d, --debug</td>
<td>emit debugging messages.</td>
</tr>
<tr>
<td>-e, --extension</td>
<td>limit search to extension type `extension'.</td>
</tr>
<tr>
<td>-f, --whatis</td>
<td>equivalent to whatis.</td>
</tr>
<tr>
<td>-k, --apropos</td>
<td>equivalent to apropos.</td>
</tr>
</tbody>
</table>
Topic 108: Documentation

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-w, --where, --location</td>
<td>print physical location of man page(s).</td>
</tr>
<tr>
<td>-l, --local-file</td>
<td>interpret `page' argument(s) as local filename(s).</td>
</tr>
<tr>
<td>-u, --update</td>
<td>force a cache consistency check.</td>
</tr>
<tr>
<td>-r, --prompt string</td>
<td>provide the `less' pager with a prompt</td>
</tr>
<tr>
<td>-c, --catman</td>
<td>used by catman to reformat out of date cat pages.</td>
</tr>
<tr>
<td>-7, --ascii</td>
<td>display ASCII translation of certain latin1 chars.</td>
</tr>
<tr>
<td>-D, --default</td>
<td>reset all options to their default values.</td>
</tr>
<tr>
<td>-M, --manpath path</td>
<td>set search path for manual pages to `path'.</td>
</tr>
<tr>
<td>-P, --pager pager</td>
<td>use program 'pager' to display output.</td>
</tr>
<tr>
<td>-S, --sections list</td>
<td>use colon separated section list.</td>
</tr>
<tr>
<td>-m, --systems system</td>
<td>search for man pages from other unix system(s).</td>
</tr>
<tr>
<td>-L, --locale locale</td>
<td>define the locale for this particular man search.</td>
</tr>
<tr>
<td>-V, --version</td>
<td>show version.</td>
</tr>
<tr>
<td>-h, --help</td>
<td>show this usage message.</td>
</tr>
</tbody>
</table>

catman

Creates or updates the pre-formatted manual pages.

Catman is used to create an up to date set of pre-formatted manual pages known as cat pages. Cat pages are generally displayed much faster than the original man pages, but require extra storage space. Normally the man pages are in GROFF format. man searches first for a preformatted cat page, if not found it must then convert the GROFF man page into a format readable by and adjusted to the present terminal. The local administrator decides whether to use cat pages or not, and provides suitable directories to contain them. catman works with the variables MANSECT and MANPATH, if MANSECT is not set.

Syntax:

```
catman [-dhV] [-M path] [section] ...
```

info pages

Info pages are supposed to have more information than the man pages. Some individuals write a short description of their programs in the man pages and a longer one in the info pages.

Syntax:

```
info [OPTIONS] [command] [subsection]
```

Navigation through info pages

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><space></td>
<td>move forward, Page-Down-Key</td>
</tr>
<tr>
<td><Backspace></td>
<td>move backward, Page-Up-Key</td>
</tr>
<tr>
<td>b</td>
<td>begin of node</td>
</tr>
<tr>
<td>e</td>
<td>end of node</td>
</tr>
<tr>
<td>u</td>
<td>up node</td>
</tr>
<tr>
<td>n</td>
<td>next node</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>p</td>
<td>previous node</td>
</tr>
<tr>
<td>d</td>
<td>directory</td>
</tr>
<tr>
<td>s</td>
<td>search * find</td>
</tr>
<tr>
<td>l</td>
<td>last text displayed</td>
</tr>
<tr>
<td>h</td>
<td>help</td>
</tr>
</tbody>
</table>
Topic 108: Documentation

1.108.2 Find Linux documentation on the Internet

Description: Candidates should be able to find and use Linux documentation. This objective includes using Linux documentation at sources such as the Linux Documentation Project (LDP), vendor and third-party websites, newsgroups, newsgroup archives, and mailing lists.

Weight: 3

Key files, terms, and utilities include:
- not applicable

Linux Documentation Project

http://www.tldp.org

The Linux Documentation Project web site. Contains Handbooks, Books, HOWTOs, FAQs and lots more.

http://www.linux.org/docs/

The official Linux web site with more Documentation and links to other Linux web sites.

Newsgroups

- comp.os.linux.advocacy
 General discussion about the advantages of using Linux vs. other OS.

- comp.os.linux.announce
 Commented Linux news

- comp.os.linux.answers
 Commented sending of Linux FAQ's, HOWTO's, and README's.

- comp.os.linux.apps
 General discussion about Linux Applications.

- comp.os.linux.development.apps
 Discussion about programming and porting applications for Linux.

- comp.os.linux.development.system
 Discussions about the Linux kernel, device drivers and loadable modules.

- comp.os.linux.hardware
 General discussion regarding Linux hardware compatibility.

- comp.os.linux.misc
 Different themes about Linux which are not found in other newsgroups.

- comp.os.linux.networking
 General discussions regarding networking and communications.

- comp.os.linux.setup
 General discussions regarding Linux installation and System Administration.
Topic 108: Documentation

comp.os.linux.x
 Discussions about The X Window System under Linux.
alt.os.linux
 General discussion regarding Linux.

Newsgroup Archives
http://www.dejanews.com
 Archives of all Newsgroups. Google has taken over this function.

Mailing lists
The following mailing lists are running off a central Majordomo server. To subscribe to
one of these mailing list, send an email to majordomo@vger.kernel.org with the following
as the mail text body:

 subscribe ListName

 ListName = One of the mailing lists below. The text in the subject area is ignored.

<table>
<thead>
<tr>
<th>linux-8086</th>
<th>linux-admin</th>
<th>linux-alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>linux-apps</td>
<td>linux-arm</td>
<td>linux-bbs</td>
</tr>
<tr>
<td>linux-c-programming</td>
<td>linux-config</td>
<td>linux-console</td>
</tr>
<tr>
<td>linux-diald</td>
<td>linux-doc</td>
<td>linux-fido</td>
</tr>
<tr>
<td>linux-fsf</td>
<td>linux-ftp</td>
<td>linux-gcc</td>
</tr>
<tr>
<td>linux-gcc-digest</td>
<td>linux-hams</td>
<td>linux-hppa</td>
</tr>
<tr>
<td>linux-ibcs2</td>
<td>linux-ixp</td>
<td>linux-ispn</td>
</tr>
<tr>
<td>linux-japanese</td>
<td>linux-kernel</td>
<td>linux-kernel</td>
</tr>
<tr>
<td>linux-kernel-digest</td>
<td>linux-kernel-patch</td>
<td>linux-laptop</td>
</tr>
<tr>
<td>linux-linuxs</td>
<td>linux-lugnuts</td>
<td>linux-mca</td>
</tr>
<tr>
<td>linux-mips</td>
<td>linux-mdos</td>
<td>linux-mdos-digest</td>
</tr>
<tr>
<td>linux-mdsow-devel</td>
<td>linux-net</td>
<td>linux-new-lists</td>
</tr>
<tr>
<td>linux-newbie</td>
<td>linux-newbiew</td>
<td>linux-nys</td>
</tr>
<tr>
<td>linux-oasg</td>
<td>linux-oi</td>
<td>linux-opengl</td>
</tr>
<tr>
<td>linux-pkg</td>
<td>linux-ppp</td>
<td>linux-pro</td>
</tr>
<tr>
<td>linux-qag</td>
<td>linux-raid</td>
<td>linux-scsi</td>
</tr>
<tr>
<td>linux-serial</td>
<td>linux-seyon</td>
<td>linux-smp</td>
</tr>
<tr>
<td>linux-sound</td>
<td>linux-standards</td>
<td>linux-svgalib</td>
</tr>
<tr>
<td>linux-tape</td>
<td>linux-term</td>
<td>linux-training@lists.iphil.net</td>
</tr>
<tr>
<td>linux-userfs</td>
<td>linux-word</td>
<td>linux-x11</td>
</tr>
<tr>
<td>linux-x25</td>
<td>sparc-linux</td>
<td>ultralinux</td>
</tr>
</tbody>
</table>

All of the above themes can be subscribed to and more are available from:
 http://oslab.snu.ac.kr/%7Edjshin/linux/mail-list/index.shtml
1.108.5 Notify users on system-related issues

Description: Candidates should be able to notify the users about current issues related to the system. This objective includes automating the communication process, e.g. through logon messages.

Weight: 1

Key files, terms, and utilities include:
- `/etc/issue`
- `/etc/issue.net`
- `/etc/motd`

Login Sequence

When the system boots-up, right at the end of its default runlevel, init starts the program mingetty for each virtual console defined in `/etc/inittab`.

Here is the sequence of events:

- The mingetty (getty) process displays the contents of the file `/etc/issue`
- Then it displays the “HostName login:” prompt and waits for the user to enter a username.
- When the username is entered and the user presses `<enter>`, mingetty replaces itself with the program login and login gets the username from mingetty and waits for the password from the user.
- login’s configuration file `/etc/login.defs` describes the behavior of login.
- If the file `/etc/nologin` exists, login will allow access only to root.
- Other users will be shown the contents of this file and their logins will be refused.
- If this authentication succeeds, the login process then starts a shell (usually bash).
- bash reads its configuration scripts (/etc/profile etc.) and displays the content of the file `/etc/motd` (message of the day), then displays its prompt.

Overall sequence:
```
mingetty --------------------------> login --------------------------> bash
```

<table>
<thead>
<tr>
<th>Shows /etc/issue</th>
<th>Waits for password</th>
<th>Shows /etc/motd</th>
</tr>
</thead>
<tbody>
<tr>
<td>waits for user name</td>
<td></td>
<td>and prompt</td>
</tr>
</tbody>
</table>

/etc/issue

This file contains a message sent to the consoles (by mingetty) before login. The content is normal text including special escaped characters which will be converted to their meaning before the file is displayed.

These escaped characters are

<table>
<thead>
<tr>
<th>\b</th>
<th>Baudrate of terminal connection (only for serial terminal connection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\d</td>
<td>Today's date</td>
</tr>
<tr>
<td>\s</td>
<td>Operating System Name (eg. 'Linux')</td>
</tr>
<tr>
<td>\l</td>
<td>Name of the current TTY</td>
</tr>
<tr>
<td>\m</td>
<td>System Architecture (eg. i386)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>\n</td>
<td>Hostname</td>
</tr>
<tr>
<td>\o</td>
<td>Domain name</td>
</tr>
<tr>
<td>\r</td>
<td>Release number of the Kernel</td>
</tr>
<tr>
<td>\t</td>
<td>Present time.</td>
</tr>
<tr>
<td>\u</td>
<td>Elapsed time since last login for this user</td>
</tr>
<tr>
<td>\U</td>
<td>The word User(s) and the Elapsed time since last login for this user.</td>
</tr>
<tr>
<td>\v</td>
<td>Kernel version (Builds Date)</td>
</tr>
</tbody>
</table>

/etc/issue can look like this:

```
Welcome at \n.\\o (\s \m \r)
```

This would display the following:

```
Welcome at marvin.mydomain.org (Linux i686 2.4.18)
```
Topic 109: Shells, Scripting, Programming and Compiling

Total weight for this topic

| 1.109.1 | Customize and use the shell environment | 5 |
| 1.109.2 | Customize or write simple scripts | 3 |

Summary

TODO
1.109.1 Customize and use the shell environment

Description: Candidate should be able to customize shell environments to meet users' needs. This objective includes setting environment variables (e.g. PATH) at login or when spawning a new shell. It also includes writing bash functions for frequently used sequences of commands.

Weight: 5

Key files, terms, and utilities include:

~/.bash_profile
~/.bash_login
~/.profile
~/.bashrc
~/.bash_logout
~/.inputrc

function (Bash built-in command)
set (Bash built-in command)
unset (Bash built-in command)
env
export

Login vs. Non-login shell

Login shell: Shell started with login, bash -l or su – command
Non-login shell: Shell started any other way

Reason for 2 types of shell

The login shell reads a series of configuration file as it is started.
The non-login shells inherit settings (environment variables) from the parent program which started it.

Variable inheritance

Variables declared inside a shell are inherited by child processes if the variable has been exported.

If a child process changes its own copy of an exported variable, the parent shell's copy is not changed. The changed value is exported to any subchild processes.

All exported shell variables keep their export settings in the child process.

If a shell script is called from within a shell a new child non-login shell is started.

If a shell script is started with the '.' command within a shell, then the script is run within that current shell. Example:

 . /home/joe/bin/myscript

 Warning: If the called script runs the command exit, the current shell will be terminated!
Interactive and non-interactive shells

Interactive shell: Provides a prompt where the user can type commands.

Non-Interactive shell: No shell prompt - started by calling a shell script or by the command: sh -c 'command...'

Sequence of events when bash starts

<table>
<thead>
<tr>
<th>Files read</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive-login bash</td>
<td>bash --login or su - username or from login</td>
</tr>
<tr>
<td>/etc/profile</td>
<td>Executed first from interactive login shell. It contains system-wide</td>
</tr>
<tr>
<td></td>
<td>environment settings.</td>
</tr>
<tr>
<td>~/.bash_profile</td>
<td>Individual user's shell settings.</td>
</tr>
<tr>
<td>~/.bash_login</td>
<td>Executed if ~/.bash_profile doesn't exist.</td>
</tr>
<tr>
<td>~/.profile</td>
<td>Executed if ~/.bash_login or ~/.bash_profile doesn't exist.</td>
</tr>
</tbody>
</table>

Interactive non-login bash
su username or bash -c command)

| ~/.bashrc | The only script executed when started. Inherits from parent bash |
| | environment. |

Non-Interactive non-login bash (forked when scripts are run)

| BASH_ENV | Reads file in the variable BASH_ENV. |
| ENV | Reads file in the variable ENV if BASH_ENV doesn't exist. |

Extra files

/etc/inputrc	System bash line editing (readline) configuration file
~/.inputrc	Individual bash line editing (readline) configuration file
~/.bash_logout	Executed (if exists) when a login shell exits.

Commands for shell/environment variables

Variable name=value

Assign a value to a set (existing) or non-set variable.

export Variable name

or

declare -x Variable name

Sets the export tag ON for an existing shell var.

export Variable name=value

or

declare -x Variable name=value
Assign a value to a set (existing) or non-set variable and sets its export tag ON, all in one command.

```
env
```

Displays all the environment variables (export tag ON)

```
export
```

Same as env command except the display format is different.

eg. declare -x PAGER="less"

Aliases

Aliases are normally used to create command shortcuts (short names).

Aliases are NOT exportable: not passed-on to sub-shells or child process.

Aliases are not recognized in scripts.

An alias can call another alias within a command. Example

```
alias li="ls -l"; alias al="li -a"
```

al calls the alias 'li'

Parameters added to alias will be added at the end of the real command.

The parameter variables ($1, $2, $3 ...etc) cannot be used within aliases.

Aliases are often defined in a file run within a script like ~/.bashrc or ~/.profile with the dot '.' command.

Alias commands:

```
alias
```

Displays all the current shell aliases.

```
alias AliasName="command(s)"
```

Sets a new alias value. Example:

```
alias cp="cp -i"
```

replaces the original command cp with cp -i for interactive copying (asks before overwriting files).

```
unalias AliasName
```

Unsets (deletes) the alias.

Functions

They are normally used like fast local mini-scripts within a shell which need to be called more than once within the interactive shell or script.

Variables can be passed-on to functions and will be recognized as $1 $2 $3 etc. In fact the following variables are local within a function:

<table>
<thead>
<tr>
<th>$1 - $9</th>
<th>Positional parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$#</td>
<td>Number of positional parameters</td>
</tr>
<tr>
<td>$*</td>
<td>"$1 $2 $3 ..."</td>
</tr>
</tbody>
</table>
The Positional parameter $0 and all other variables stay global within the shell unless the command local VariableName is given within the function. Within a function, the variable FUNCNAME is used instead of the $0.

Global shell or exported variables can be changed within the function.

Functions do not return variables except for the return number, eg. return 5 return command will also terminate the function immediately. The return number can then be read as a normal exit value using $?.

In scripts functions are normally included at the top so that they are read in first.

Environment functions can be put into a file and read in with the . command.

Functions may be recursive. No limit is imposed on the number of recursive calls.

Functions can be exported, using the command:

```bash
export -f FunctionName
```

Function syntax:

```bash
FunctionName () {
  command ;
  command ;
  ...
}
```

or

```bash
function FunctionName () {
  command ;
  command ;
  ...
}
```

The command: unset -f FunctionName deletes an existing function.

Command search priority

When a command is run, bash tries to find the command in the following sequence:

1. Aliases
2. Functions
3. Builtin commands
4. searching the PATH

The first command found is the one which is run.

To force using a builtin command instead of an alias or a function (in the case the same command name exists as alias or function), use the command builtin.

```bash
builtin cat /etc/fstab
```

set

Syntax:
set [-abefhmptuvxBCHP] [-o option] [arg ...]

The set command is used to:

- Display all bash variables and their values as well as the functions. Example:
  ```bash
  set
  ```

- Set bash operating attributes (using options). Example:
  ```bash
  set -a
  ```
 Automatically mark variables and functions which are modified or created for export to the environment of subsequent commands.

To assign values to positional parameters: Example:
```
set aaa bbb ccc
```
```
($1  $2  $3)
```
Assigns the value aaa to $1, bbb to $2 and ccc to $3.

unset

Syntax:
```
unset [-fv] [name ...]
```

For each name, remove the corresponding variable or function. Each unset variable or function is removed from the environment passed to subsequent commands.

If any of RANDOM, SECONDS, LINENO, HISTCMD, FUNCNAME, GROUPS, DIRSTACK are unset, they lose their special properties, even if they are subsequently reset.

The exit status is true unless a name does not exist or is readonly.

- `-v`
 If no options are supplied, or the `-v` option is given, each name refers to a shell variable. Read-only variables may not be unset.

- `-f`
 Each name refers to a shell function, and the function definition is removed.

Example:
```
unset DISPLAY
```
Deletes the variable DISPLAY
```
unset -f startx
```
Deletes the function startx
1.109.2 Customize or write simple scripts

Description: Candidate should be able to customize existing scripts, or write simple new (ba)sh scripts. This objective includes using standard sh syntax (loops, tests), using command substitution, testing command return values, testing of file status, and conditional mailing to the superuser. This objective also includes making sure the correct interpreter is called on the first (#!) line of scripts. This objective also includes managing location, ownership, execution and suid-rights of scripts.

Weight: 3

Key files, terms, and utilities include:
- `while`
- `for`
- `test`
- `chmod`

What is a shell script?

A shell script is a text file that tells the shell what to do.

It contains the name of the program that is used as the interpreter for the rest of the content of the script. The line starting with #!ProgramPath+Name (normally the first line) designates the interpreter to be used:

```
#!/bin/bash
```

or
```
#!/bin/sh
```

or
```
#!/usr/bin/perl -w
```

In reality when the system is asked to start a script, the line starting with #! is read and the appropriate script interpreter is started which in turns reads the script and executes the commands included in it.

Conditions for running a script

The script file must be runnable by the user running it (chmod)

The interpreter must be where the script says it is: the default is to call bash.

Language used in shell scripts

The script language depends on the script interpreter used. bash has its own syntax which can be used interactively or in a script.

Passing parameters to a script

Scripts can be given up to 9 positional parameters (for all interpreters) or up to 99 parameters with bash.

Inside the script each parameter will be identified as $1 to $9 or ${10} to ${99}
Topic 109: Shells, Scripting, Programming and Compiling

```
scriptname param1 param2 param3 param4 param5 ..... param57......

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 ...

Some special parameters are automatically set by the Bourne shell, and usually cannot be
directly set or modified.

Parameter \$n can be modified by the `set` command inside the script.
```
set aaa bbb ccc ...

```$1 $2 $3

Special Parameters

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$n</td>
<td>Positional parameter \ n  max. \ n=9 ($0 is the name of the shell script)</td>
</tr>
<tr>
<td>${nn}</td>
<td>Positional parameter nn (for nn&gt;9)</td>
</tr>
<tr>
<td>$#</td>
<td>Number of positional parameters (not including the script program)</td>
</tr>
<tr>
<td>$@, $*</td>
<td>All positional parameters</td>
</tr>
<tr>
<td>&quot;$@&quot;</td>
<td>Same as &quot;$1 &quot;$2&quot; ... &quot;$n&quot;</td>
</tr>
<tr>
<td>&quot;$*&quot;</td>
<td>Same as &quot;$1$c$2$c \ldots $n&quot;  (c = ) content of $IFS$ (default is space)</td>
</tr>
<tr>
<td>$?</td>
<td>Exit status of the last command</td>
</tr>
<tr>
<td>$$</td>
<td>Process ID of the current shell</td>
</tr>
<tr>
<td>$-</td>
<td>Current options in effect</td>
</tr>
<tr>
<td>$!</td>
<td>Process ID of the last background command</td>
</tr>
<tr>
<td>$is</td>
<td>Name of the current shell (in this case 'bash')</td>
</tr>
</tbody>
</table>

The shift command

The shift command moves the assignment of the positional parameters to the left. If a script is called like this:
```
script1 aaa bbb ccc ddd
```
And the following commands are run inside the script
```
echo $1 $2 $3
shift
echo $1 $2 $3
```
The result of the first echo command is:
```
aaa bbb ccc

$1 $2 $3
```
The result of the second echo command is:
```
bbb ccc

$1 $2 $3
```

The set and unset commands

The unset command is normally used to unset values of variables, and the set command to
assign values to positional parameters from inside a script. Very useful if a script has been
started without positional parameters and after verifying this the script assigns default values to them.

```
set aa bb cc dd
```

assign aa to $1, bb to $2, cc to $3 and dd to $4

The set command is also useful for changing properties of bash's behaviour.

One important option of set is:

```
set -o noclobber
```

Causes the redirection symbol (>) to fail to overwrite the contents of an existing file.

### Conditional statements

Below is a list of the most used conditional directives

#### The if conditional branching directive

if allows certain commands to execute only if certain conditions are met.

Syntax: (see also the section 'CONDITIONAL EXPRESSIONS' later in this topic):

```
if <condition_is_true> ; then
 run_these_commands

elsif <condition_is_true> ; then
 if first condition is not met and this one is met then:
 run_these_commands

else
 if all conditions above are not met then:
 run_these_commands_instead

fi
```

<condition_is_true> can be of the following types:

- Test the status of files or directories.
  
  ```
 if test -e /etc/fstab ; then
 or
 if [-e /etc/fstab] ; then
  ```

- Command or script exit code.
  
  ```
 if (ifconfig | grep 'ppp0') ; then
  ```

- The contents of a variable corresponding to a certain value:
  
  ```
 if $1 ; then
  ```

true if $1 has a value in it
Topic 109: Shells, Scripting, Programming and Compiling

```bash
if ["$net" = "eth0"] ; then
 (string testing)
if test "$#" -eq 5] ; then
 (integer testing)
```

The case conditional branching directive

The case conditional branching directive is normally used for conditionally branching to one of several choices depending on the content of a variable.

Syntax:

```bash
case <Variable> in
 <choice1>)
 commands to run
 ;;
 choice2)
 commands to run
 ;;
 choice3)
 commands to run
 *)
 commands to run if none of the above conditions are met.
 ;;
esac
```

end of case directive block

Looping in scripts

Used whenever a sequence of commands must be executed more than once.

The while conditional loop directive

The while conditional loop directive keeps looping and running the commands in its block for as long as its condition(s) (defined in the while statement) is/are met.

Syntax:

```bash
while <condition_is_true> ; do
 run_these_commands
done
```

end of while directive block

Note: While is often used to ask the user for a keyboard entry of some sort and if the response is not adequate then the request is repeated until the proper information is entered. The while loop is then exited and the program resumes its execution.
The until conditional loop directive
The until loop works exactly the same way as the while loop except that the logic is the opposite: The loop continues until condition(s) is/are met.

Syntax:
```
until <condition_is_true> ; do
 run_these_commands
done
end of until directive block
```

The for loop directive
The for directive allows a sequence of commands to be executed as many times as there are items in a given list. Each time the loop runs through, the content of a specific variable becomes value of the current item in the given list.

Syntax:
```
for variable in list ; do
 run_these_commands
done
end of for directive block
```

variable =the variable name which will have its content become the current item on each loop round in the given list.

The list can also be a variable which contains a list of items.
```
for item in ~/file1 ~/file2 ~/file3 ; do
 echo "------------- Content of $item -------------"
 cat $item >> ~/allfiles
done
```

Shell functions
Shell functions are a series of commands stored in one place that can be used from several points in the script.

Parameters can be passed to functions via positional parameters.

The positional parameters ($1, $2, $3 ...), which will become local to the function. They use the same syntax as for a script except that the first ($0) stays global.

The variable FUNCNAME is used similarly to, for the same purpose as, $0.

Special variables like $# , *, @, are also local within the function.

All other variables are global to the script and can be modified by the functions.

The command return x (x=return code) can be used as a function exit command and to assign a function return code.

Syntax:
FunctionName () {
  command ;
  command ;
}

or

function FunctionName () {
  command ;
  command ;
}

See functions in the previous section (1.109.1 Customize and use the shell environment) for more details on shell Functions.

**Exit codes and the variable $?**

All programs, including scripts, return an exit code when their process ends. The exit code helps determine the success or failure of the program or the script. This exit code can be read via the special variable $? and be used to make decisions further in the calling script. Generally the exit code of 0 means success and any other code (1-255) means some sort of failure. It is also often referred as the error code.

**The && and || conditional branching**

The exit code can be used to execute another command (only one) depending upon its success or its failure. The double ampersand '&&' is used to designate the command to run if the exit code is success (0). The double pipe '||' designates the command to run if the exit code is not a success (1-255).

Example

```
ifconfig ppp0 && echo "pppd running" || echo "pppd not running"
```

If the command `ifconfig ppp0` succeeds then the command `echo "pppd running"` will be executed (&&) otherwise the command `echo "pppd not running"` will be executed (||).

**Mailing messages to root from a script**

Sometimes it is useful to mail a message to root or other users announcing some anomalies or success in the running of an automated script. The program normally used is 'mail'. See man mail for all the options it uses.

Syntax1:

```
mail -s "subject" destination_mail_address "message.."
```

Syntax2:

```
program | mail -s "subject" destination_mail_address
```

Syntax3:
mail -s "subject" destination_mail_address <<EOM
message body......
EOM

Example:
df | mail -s "HD Space on $(date)" root
Mails the result of the command df to the local root user.

Location and security for bash scripts
Administration scripts are normally stored in the PATH which is either /usr/local/bin or /root/bin. The normal access rights are 755(rwx r-x r-x) or for more protection by preventing any other user than root to run it: 700(rwx --- ---).
Although the SUID doesn't have any effect on scripts, very old versions of Linux may be affected by SUID being set.

CONDITIONAL EXPRESSIONS
The test and [...] commands are used to evaluate conditional expressions with file attributes, strings, and integers. The basic format is:

        test expression
        or
        [ expression ]

Where expression is the condition you are evaluating. There must be whitespace after the opening bracket, and before the closing bracket. Whitespace must also separate the expression arguments and operators. If the expression evaluates to true, then a zero exit status is returned, otherwise the expression evaluates to false and a non-zero exit status is returned.

Test File Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a file</td>
<td>True if file exists.</td>
</tr>
<tr>
<td>-b file</td>
<td>True if file exists and is a block special file.</td>
</tr>
<tr>
<td>-c file</td>
<td>True if file exists and is a character special file.</td>
</tr>
<tr>
<td>-d file</td>
<td>True if file exists and is a directory.</td>
</tr>
<tr>
<td>-e file</td>
<td>True if file exists.</td>
</tr>
<tr>
<td>-f file</td>
<td>True if file exists and is a regular file.</td>
</tr>
<tr>
<td>-g file</td>
<td>True if file exists and is set-group-id.</td>
</tr>
<tr>
<td>-h file</td>
<td>True if file exists and is a symbolic link.</td>
</tr>
<tr>
<td>-k file</td>
<td>True if file exists and its <code>\</code>sticky` bit is set.</td>
</tr>
<tr>
<td>-p file</td>
<td>True if file exists and is a named pipe (FIFO).</td>
</tr>
<tr>
<td>-r file</td>
<td>True if file exists and is readable.</td>
</tr>
<tr>
<td>-s file</td>
<td>True if file exists and has a size greater than zero.</td>
</tr>
<tr>
<td>-t fd</td>
<td>True if file descriptor fd is open and refers to a terminal.</td>
</tr>
</tbody>
</table>
### Topic 109: Shells, Scripting, Programming and Compiling

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u file</td>
<td>True if file exists and its SUID bit is set.</td>
</tr>
<tr>
<td>-w file</td>
<td>True if file exists and is writable.</td>
</tr>
<tr>
<td>-x file</td>
<td>True if file exists and is executable.</td>
</tr>
<tr>
<td>-O file</td>
<td>True if file exists and is owned by the effective UID.</td>
</tr>
<tr>
<td>-G file</td>
<td>True if file exists and is owned by the effective GID.</td>
</tr>
<tr>
<td>-L file</td>
<td>True if file exists and is a symbolic link.</td>
</tr>
<tr>
<td>-S file</td>
<td>True if file exists and is a socket.</td>
</tr>
<tr>
<td>-N file</td>
<td>True if file exists and has been modified since it was last read.</td>
</tr>
<tr>
<td>file1 -nt file2</td>
<td>True if file1 is newer (according to the modification date) than file2, or if file1 exists and file2 does not.</td>
</tr>
<tr>
<td>file1 -ot file2</td>
<td>True if file1 is older than file2, or if file2 exists and file1 does not.</td>
</tr>
<tr>
<td>file1 -ef file2</td>
<td>True if file1 and file2 refer to the same device and inode numbers.</td>
</tr>
</tbody>
</table>

#### Test String Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n string</td>
<td>True if length of string is not zero</td>
</tr>
<tr>
<td>-z string</td>
<td>True if length of string is zero</td>
</tr>
<tr>
<td>string</td>
<td>True if string is not set to null</td>
</tr>
<tr>
<td>string1 = string2</td>
<td>True if string1 is equal to string2</td>
</tr>
<tr>
<td>string1 == string2</td>
<td>True if string1 is equal to string2</td>
</tr>
<tr>
<td>string1 != string2</td>
<td>True if string1 is not equal to string2</td>
</tr>
<tr>
<td>string1 &lt; string2</td>
<td>True if string1 sorts before string2 lexicographically in the current locale.</td>
</tr>
<tr>
<td>string1 &gt; string2</td>
<td>True if string1 sorts after string2 lexicographically in the current locale.</td>
</tr>
<tr>
<td>string = pattern</td>
<td>True if string matches pattern</td>
</tr>
<tr>
<td>string != pattern</td>
<td>True if string does not match pattern</td>
</tr>
</tbody>
</table>

#### Test Integer Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp1 -eq exp2</td>
<td>True if exp1 is equal to exp2</td>
</tr>
<tr>
<td>exp1 -ne exp2</td>
<td>True if exp1 is not equal to exp2</td>
</tr>
<tr>
<td>exp1 -le exp2</td>
<td>True if exp1 is less than or equal to exp2</td>
</tr>
<tr>
<td>exp1 -lt exp2</td>
<td>True if exp1 is less than exp2</td>
</tr>
<tr>
<td>exp1 -ge exp2</td>
<td>True if exp1 is greater than or equal to exp2</td>
</tr>
<tr>
<td>exp1 -gt exp2</td>
<td>True if exp1 is greater than exp2</td>
</tr>
</tbody>
</table>

#### Other test Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>! exp</td>
<td>True if the given expression is false</td>
</tr>
<tr>
<td>exp1 -a exp2</td>
<td>True if both exp1 and exp2 evaluate to true (see example below)</td>
</tr>
</tbody>
</table>
exp1 -o exp2  True if either exp1 or exp2 evaluate to true
\( \text{exp} \)  True if exp is true; used to group expressions

The \ used to escape parentheses. Use spaces before and after this character

\[^{\text{\"A\" = \"B\" -a \( \text{\"C\" = \"D\" -a \"E\" = \"F\" \) \}}\]

Spaces: always use a space between the [ ]\( \) and expressions as pointed to by ‘^’ in the above command.
Topic 111: Administrative Tasks

**Total weight for this topic**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.111.1</td>
<td>Manage users and group accounts and related system files</td>
</tr>
<tr>
<td>1.111.2</td>
<td>Tune the user environment and system environment variables</td>
</tr>
<tr>
<td>1.111.3</td>
<td>Configure and use system log files to meet admin and security needs</td>
</tr>
<tr>
<td>1.111.4</td>
<td>Automate system admin tasks by scheduling jobs to run in the future</td>
</tr>
<tr>
<td>1.111.5</td>
<td>Maintain an effective data backup strategy</td>
</tr>
<tr>
<td>1.111.6</td>
<td>Maintain system time</td>
</tr>
</tbody>
</table>

21

**Summary**

TODO
1.111.1 Manage users and group accounts and related system files

**Description:** Candidate should be able to add, remove, suspend and change user accounts. Tasks include to add and remove groups, to change user/group info in passwd/group databases. The objective also includes creating special purpose and limited accounts.

**Weight:** 4

Key files, terms, and utilities include:

- `/etc/passwd`
- `/etc/shadow`
- `/etc/group`
- `/etc/gshadow`
- `chage`
- `gpasswd`
- `groupadd`
- `groupdel`
- `groupmod`
- `grpconv`
- `grpunconv`
- `passwd`
- `pwconv`
- `pwunconv`
- `useradd`
- `userdel`
- `usermod`

**/etc/passwd**

This file contains user account info, one account per line. Fields are separated by `:`.

File Format:

```
username : x : userID : GroupID : UserInfo : HomeDir : Shell
```

Field 2 = Password field
x = reference to `/etc/shadow`,
empty = no password,
* or ! = no login possible

**/etc/shadow**

If the shadow password system is installed, this file contains the encrypted passwords for each user and their expiry parameters. Fields are separated with `:`.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>User login name</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Encrypted password</td>
<td>empty = no password, * = no login possible</td>
</tr>
<tr>
<td>3</td>
<td>Days since Jan 1, 1970 when password was last changed</td>
<td>never empty</td>
</tr>
</tbody>
</table>
### Administration of user accounts

User accounts are located in the file `/etc/passwd`, their encrypted passwords are in `/etc/shadow` (if the shadow password system is installed). When a new user account is created (using `useradd`) the default template (-m option) used to create the user's personal and work directory is `/etc/skel`.

Users admin commands:

**useradd**

`useradd [OPTIONS] username`

Adds a user to the system

**Options:**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-b default_home_directory_path</code></td>
<td>The username will be added to the path</td>
</tr>
<tr>
<td><code>-d default_home_directory_path</code></td>
<td>The username will NOT be added to the path</td>
</tr>
<tr>
<td><code>-e default_expire_date</code></td>
<td>The date on which the user account is disabled.</td>
</tr>
<tr>
<td><code>-f default_inactive</code></td>
<td>The number of days after a password has expired before the account will be disabled.</td>
</tr>
<tr>
<td><code>-g default_group</code></td>
<td>The group name or GID for a new user's main group.</td>
</tr>
<tr>
<td><code>-s default_shell</code></td>
<td>The name and location of the new user's login shell.</td>
</tr>
<tr>
<td><code>-m</code></td>
<td>Copies the directory <code>/etc/skel</code> to user home directory</td>
</tr>
<tr>
<td><code>-k template_dir</code></td>
<td>Combined with <code>-m</code> will copy use the template_dir instead of <code>/etc/skel</code>.</td>
</tr>
</tbody>
</table>

Note: When certain defaults are not given via options then they are taken from the file `/etc/default/useradd` file. These default parameters can also be seen using:

`useradd -D`

**usermod**

Modifies the existing user's login parameters
Topic 111: Administrative Tasks

```
usermod username [-c comment] [-d home_dir [-m]]
[-e expire_date] [-f inactive_time]
[-g initial_group] [-G group[, ...]]
[-l login_name] [-p passwd]
[-s shell] [-u uid [-o]] [-L|-U]
```

**userdel**

Deletes a user from the system

`userdel username [-r]`

- `r` Deletes the user's home directory as well !!!

**passwd**

Changes the password and password expiry info of user.

Characters allowed in passwords are:

```
* , . ; : _ - + ! $ % & / | ? { [()] }
```

Syntax:

```
passwd [options] [username]
```

Useful Options:

- `-e`
  The user will be forced to change the password at next login.

- `-l`
  A system administrator can lock the account of the specified user.

- `-u`
  A system administrator can unlock the specified account.

- `-n min`
  With this option the minimum number of days between password changes is changed. A value of zero for this field indicates that the user may change her password at any time. Else the user will not be permitted to change the password until min days have elapsed.

- `-x max`
  With this option the maximum number of days during which a password is valid is changed. When maxdays plus lastday is less than the current day, the user will be required to change his password before being able to use the account.

**chage**

Used to list (-l) or to change the user's password expiry parameters.

Syntax:

```
chage [options] username
```

Options:
Topic 111: Administrative Tasks

[-m mindays]  [-M maxdays]  [-d lastday]
[-I inactive]  [-E expiredate]  [-W warnendays]

**newusers**

`newusers <passfile>`

Update and create new users in batch mode, using `<passfile>` for input

**chpasswd**

`chpasswd <passfile>`

Modifies the passwords of multiple users in batch mode using `<passfile>` for input

**/etc/login.defs**

This file is for setting the extra defaults after login.

**Other login / user related commands**

`id -ng [username]`

Shows the present effective group of a user.

`id -nG [username]`

Shows all the groups the present user belongs to.

`groups [username]`

Shows all the groups the present user belongs to.

`id -nu [username]`

Shows the current username of a user.

`echo $USER`

Shows the current user.

`id -u`

Shows the current user ID of a user.

`users`

users presently logged in locally (short format)

`who`

users presently logged in locally (long format)

`w`

users presently logged in locally (long format)

`finger [-l username]`

users presently logged in locally or remotely (long format). Information in [room_no] below will not be shown

`chfn [options]`
Topic 111: Administrative Tasks

Changes the user's info (field 5) in the /etc/passwd. (for scripting purposes)
Options:
- [-f full_name] [-r room_no] [-w work_ph]
- [-h home_ph] [-o other] [user]
  Each field will be separated with commas (,)
  Characters NOT allowed are: , : = or Ctrl chars.

lastlog
Shows the last logins that happened since the log file /var/log/lastlog (binary format!!) was created. The list includes booting and shutdowns and logins on previous days.
Options:
- [-u username] [-t days_before]

last
Displays all the proper logins that happened since the last creation of the (binary format!!) log file /var/log/wtmp.
This file is regularly compressed and re-created.

lastb
Displays all the proper logins that happened since the last creation of the (binary format!!) log file /var/log/btmp.
This file is regularly compressed and re-created.

Administration of groups
A user can belong to more than one group at the same time.
A user who is member of a group can change to that group without password but a user who is NOT a member can only change to that group if the group password exists and the user gives it.
One or more users can become group administrators for specific groups.
Group Administrators can:
- add/change/delete the password of the group
- add/delete users to the group
- reserve the group for members-only

Group administration commands

groupadd

groupadd [options] group
  System administrator (root) adds a group to the system. Options:
  -g gid
    The numerical value of the group’s ID. Value must be non-negative. This value must be unique, unless the -o option is used.
Topic 111: Administrative Tasks

-o
Assigns an existing ID to a group. The default is to use the smallest ID value equal to or greater than GID_MAX from /etc/login.defs and greater than every other group. Values between 0 and lower than GID_MIN are typically reserved for system accounts.

-r
This flag instructs groupadd to add a system account. The first available gid lower than GID_MAX will be automatically selected unless the -g option is also given on the command line.

groupmod
groupmod [-g newgid] [-n newname] group
System administrator modifies a group settings.
- g newgid
changes the gid of the group.
- n newname
changes the name of the group.

groupdel
groupdel group
System administrator deletes a group from the system

gpasswd
General command to administer group passwords. A group can have a Group Administrator

gpasswd [options] group
adds/changes the group's password.
Note: The group's password is only needed if a user, who is not a member of the group, wants to temporarily become one and have it as his effective group. He will be prompted to give the group's password.
Options for use by the System Administrator:
-R
Makes the group reserved for members-only.
Result: No change of group through sg or newgrp is allowed for non-members. The password in /etc/gshadow becomes '!!'
-A user,...
adds Group Administrator(s) to a group.
-M user,...
adds Group Member(s) to a group.
-r group
Topic 111: Administrative Tasks

Removes the password for the group.
The group is then also reserved for members-only. Password in /etc/gshadow is simply deleted.

Options for use by Group Administrators:

\texttt{gpasswd [options] group}

- Adds a new password to a group.
  - \texttt{-a user}
    - Permanently adds a user to a group
  - \texttt{-d user}
    - Permanently deletes a user from a group.
  - \texttt{-r group}
    - Removes the password for the group. (same as with root)

\textbf{newgrp}

\texttt{newgrp group}

A user changes himself temporarily to a new group.

If the user is not a permanent member, password is required. The user will be denied access if the group password is empty and the user is not a permanent member.

\textbf{sg}

\texttt{sg group -c command}

Runs a command as participant of the given group and returns to normal after the command finishes.

\textbf{grpck}

\texttt{grpck group}

System administrator checks a group.

The groups configuration files

\texttt{/etc/group}

- Lists all the users for each group.
- Note: The default (main) group of users does not contain the users names
- Format:
  
  \begin{verbatim}
  groupname : Password or x or ! : GID : Memberlist
  \end{verbatim}

\texttt{/etc/gshadow}

- Contains group passwords
Converting between password systems

Initially user passwords were stored in /etc/passwd using DES encryption. This file is readable by everyone and modern fast computers can reverse decode these passwords. The shadow password system was introduced to fix this. The passwords are stored in /etc/shadow using MD5 encryption and only root may read the file. If the shadow password system is installed and activated, the second field of /etc/passwd file contains an 'x', to indicate that the user has a password and it is located in /etc/shadow file.

To convert from one password system to another the following commands are used:

pwconv
Converts all the users passwords from the older system to the shadow password system. It creates the file /etc/shadow.

pwunconv
Converts all the users passwords from the shadow system to the older system. /etc/shadow is then erased.

grpconv
Similar to pwconv except that it applies it to groups. Converts all the group passwords from the older system to the shadow password system. It creates the file /etc/gshadow.

grpunconv
Similar to pwunconv except that it applies to groups. Converts all the group passwords from the shadow system to the older system. /etc/gshadow is then erased.

Checking the consistency of password and group files

Two tools are available for checking the consistency of the user and groups accounts files.

pwck

pwck [options]
Checks the user's accounts files for consistency.
Checks /etc/passwd and /etc/shadow
Checks are made to verify that each entry has:
the correct number of fields
a unique user name
a valid user and group identifier
a valid primary group
a valid home directory
a valid login shell.
Topic 111: Administrative Tasks

Options:

- \(-r\)
  Causes all questions regarding changes to be answered 'no' without user intervention.

- \(-s\)
  Sorts entries in /etc/passwd and /etc/shadow by UID.

**grpck**

grpck [options]
Checks the group accounts files for consistency.
Check /etc/group and /etc/gshadow
Checks are made to verify that each entry has:
  - the correct number of fields
  - a unique group name
  - a valid list of members and administrators.

Options:

- \(-r\)
  Causes all questions regarding changes to be answered 'no' without user intervention.

- \(-s\)
  Sorts entries in /etc/passwd and /etc/shadow by UID.

**Tips & Tricks**

Showing all the registered users and their groups in detail (for systems where the UID starts at 500):

```
grep '\:[5-9][0-9]*' /etc/passwd | cut -d: -f1) ; \
for user in $users; do id $user ; done ;
```

Producing an encrypted password through crypt() function.

```
echo ClearTextPassword | mkpasswd -s
```

Disable a user account without deleting anything:

```
Add a * or a ! to the encrypted password in /etc/shadow file.
```

Preventing a user from logging in to a shell:

```
Change the user’s shell entry in /etc/passwd to /bin/false
usermod -s /bin/false username
```
1.111.2 Tune the user environment and system environment variables

Description: Candidate should be able to modify global and user profiles. This includes setting environment variables, maintaining skel directories for new user accounts and setting command search path with the proper directory.

Weight: 3

Key files, terms, and utilities include:
- /etc/profile
- /etc/skel
- env
- export
- set
- unset

Shell configuration

Each time a user logs-in (via the login program) a shell is started. Which shell will be started is defined in the last field of /etc/passwd. Depending on the shell started, some configuration files will be executed to prepare the shell's environment. Some configurations are system-wide and others are unique to each individual user.

Here is the list of configuration files read for different login-shells:

<table>
<thead>
<tr>
<th></th>
<th>Bourne Again Shell</th>
<th>Korn Shell</th>
<th>TC-Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>System wide</td>
<td>/etc/profile</td>
<td>/etc/csh.cshrc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>/etc/csh.login</td>
<td></td>
</tr>
<tr>
<td>Individual Users</td>
<td>~/.bash_profile</td>
<td>~/.tcshrc or ~/.cshrc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>~/.bash_login</td>
<td>~/.history</td>
<td></td>
</tr>
<tr>
<td></td>
<td>~/.profile</td>
<td>~/.login</td>
<td>~/.cshdirs</td>
</tr>
</tbody>
</table>

A non-login bash shell reads only ~/.bashrc and inherits all the environment parameters from the parent process.

Although already mentioned in the previous chapters, there is also a difference between an interactive shell and a non-interactive shell:

Interactive:
- Presents a prompt for the user to enter commands. The shell will read its configuration files depending on whether it is a login or non-login shell. (see above)

Non-interactive:
- Is normally run as a sub-shell and will not read any configuration file. It depends entirely on inheritance from the parent process.

Parameters defined for bash in configuration files

The following parameters are defined either in /etc/profile for all users or in one of the files defining the individual bash settings:
Topic 111: Administrative Tasks

`~/.bash_profile`  
`~/.bash_login`  
`~/.profile`

Some of the environment variables must be set properly before the shell is ready to respond to user commands. Here is a short list of them:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH</td>
<td>Defines the directories that will be searched by bash to locate programs entered without a path.</td>
</tr>
<tr>
<td>MANPATH</td>
<td>Defines where the man program will look for man pages.</td>
</tr>
<tr>
<td>INFODIR and INFOPATH</td>
<td>Paths where the info program searches for info pages.</td>
</tr>
<tr>
<td>PAGER</td>
<td>Contain the name and path of the program used to display man pages.</td>
</tr>
<tr>
<td>EDITOR</td>
<td>Contains the path and program name of the editor used by some programs like less. in less the ‘v’ command starts the editor. Default is /bin/vi.</td>
</tr>
<tr>
<td>PS1 and PS2</td>
<td>Define the prompt displayed by bash when waiting for a user command.</td>
</tr>
<tr>
<td>LS_OPTIONS or LESSCHARSET</td>
<td>Contain the list of options and parameters that less uses to display the content of files.</td>
</tr>
</tbody>
</table>

When bash exits, either after the command logout, or exit, or the key combination Ctrl-D, it runs the file script `~/.bash_logout` if it exists.

**Environment Variables**

The environment variables are simply the variables held by bash that are tagged for export, i.e. variables that will be passed-on to children processes.

All inherited variables are exported to child processes.

Variables that are NOT tagged for export are called shell variables.

To set the export flag of a shell variable the commands `export` or `declare -x` are used.

Example:

```bash
export DISPLAY
```

or

```bash
declare -x DISPLAY
```

A shell variable can also be created, filled with a value and tagged for export in one command: eg.

```bash
export DISPLAY=localhost:0.0
```

Here are some commands (already seen in other chapters) to manipulate variables:

```bash
variable=value
```

Defines the value of a shell or exported variable.

```bash
export
```
Topic 111: Administrative Tasks

Lists all the exported (environment) variables

```
declare -x
```

Lists all the exported (environment) variables

```
set
```

Lists all shell and exported variables including functions.

```
unset variablename
```

Deletes a variable and its value.

```
set parameters
```

Used to define positional variables or define bash operational options.

The directory `/etc/skel/`

This directory contains all the files and subdirectories that are used as template when creating a new user's home directory with the useradd command.

```
useradd -m username.
```

Because of this, any changes made to the content of this directory will be reflected in the new user's home directories created afterwards. The files and directories in this directory belong to root but their copies will belong to their respective owners when their home directory is created. This is the default template directory.

Another template directory can also be used by issuing the command:

```
useradd -mk /template/dir.
```
1.111.3 Configure and use system log files to meet administrative and security needs

**Description:** Candidate should be able to configure system logs. This objective includes managing the type and level of information logged, manually scanning log files for notable activity, monitoring log files, arranging for automatic rotation and archiving of logs and tracking down problems noted in logs.

**Weight:** 3

Key files, terms, and utilities include:
- `/etc/syslog.conf`
- `/var/log/*`
- `logrotate`
- `tail -f`

**The syslogd daemon**

This daemon process runs in the background, receives log information from the kernel and from other applications or daemons and, according to the configuration in `/etc/syslog.conf`, distributes the log information either to files or sends it to a console or even to a syslog server via network.

Each log entry contains only a one line message.

The same log information can be sent to many files or other destinations.

The log information is received with the following content:
- Facility:
  - `auth`, `authpriv`, `cron`, `daemon`, `kern`, `lpr`, `mail`, `news`, `localN`, `user`
- Priority Level:
  - `debug`, `info`, `notice`, `warning`, `err`, `crit`, `alert`, `emerg`
- Tag: Title and maybe the PID of process.
- Log Text: (actual message).

The saved or sent information (one line) has the following content:

```
Date Time Hostname Tag [Process ID] Message
```

**Format of `/etc/syslog.conf`**

```
facility.level;[facility.level];....... destination
```

IMPORTANT: Remember to use TABs and NOT spaces in your syslog.conf file. Otherwise it won't work.

**Facilities**

For multiple facilities, list them all separated by `;` eg. `auth,cron.*`

<table>
<thead>
<tr>
<th></th>
<th>All Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>All Facilities</td>
</tr>
<tr>
<td>auth</td>
<td>General authentications</td>
</tr>
</tbody>
</table>
Topic 111: Administrative Tasks

<table>
<thead>
<tr>
<th>authpriv</th>
<th>Login authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>cron</td>
<td>cron subsystem</td>
</tr>
<tr>
<td>daemon</td>
<td>System server processes</td>
</tr>
<tr>
<td>kern</td>
<td>Linux Kernel</td>
</tr>
<tr>
<td>lpr</td>
<td>Spooling subsystem</td>
</tr>
<tr>
<td>mail</td>
<td>Mail subsystem</td>
</tr>
<tr>
<td>news</td>
<td>News subsystem</td>
</tr>
<tr>
<td>localN</td>
<td>Locally defined syslog facilities N=0 to 7</td>
</tr>
<tr>
<td>user</td>
<td>Users system messages</td>
</tr>
</tbody>
</table>

**Levels**

Established priority, from the least to the most important level

<table>
<thead>
<tr>
<th>none</th>
<th>Exclude messages of this facility. E.g. mail.none = no mail messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>All messages</td>
</tr>
<tr>
<td>debug</td>
<td>Lots of messages. For debugging purposes</td>
</tr>
<tr>
<td>info</td>
<td>Information</td>
</tr>
<tr>
<td>notice</td>
<td></td>
</tr>
<tr>
<td>warning</td>
<td></td>
</tr>
<tr>
<td>err</td>
<td>Errors</td>
</tr>
<tr>
<td>crit</td>
<td>Critical</td>
</tr>
<tr>
<td>alert</td>
<td>Very critical</td>
</tr>
<tr>
<td>emerg</td>
<td>High emergency</td>
</tr>
</tbody>
</table>

**Destinations**

Log messages can be sent to various places:

- files, e.g.:
  - `/var/log/cron.msgs`
- devices, e.g.:
  - `/dev/tty6 (to virtual console 6)`
- usernames, e.g.:
  - `root (to root) or * (to all logged-in users)`
- computers, e.g.:
  - `@moon (to 'moon' host....syslog server)`
- named pipes, e.g.:
  - `|/dev/xconsole (to the virtual x console)`
  - `` before the filename means: buffered before writing, e.g.:
Topic 111: Administrative Tasks

*.*;mail.none;auth.none -/var/log/messages

General examples
kern.=warn;*.err;authpriv.none -/var/log/warnings
    send Kernel warnings only
    error messages from all facilities
    BUT none from the authpriv
    to the file /var/log/warnings
    ( '-' before the filename means buffered before writing to disk)
*.emerg;user.none *
    sent to every user currently logged in - for real emergencies
    BUT not the messages concerning users

Using a syslog server
*.info @mainlogger.gdf.local
    Send all info level messages and more serious to the host 'mainlogger' using UDP
    protocol, port: 514
    The host mainlogger.gdf.local will log these messages according to its
    /etc/syslog.conf configuration file as if coming from its local processes. Messages
    will include the IP of sending host though.
    IMPORTANT: The receiver host must start the syslogd daemon with the -r option
    (/usr/sbin/syslogd -r) in the /sbin/init.d/syslog script to enable the receiving
    logging messages on port 514 from other hosts.
    Special for SuSE distribution 8.0 and up:
    in /etc/sysconfig/syslog the parameter SYSLOGD_PARAMS should include the " -r
    " (SYSLOGD_PARAMS="-r ")
    or use YAST (/etc/sysconfig/ editor ) and Search for SYSLOGD

Watching the real-time content of a log file
The following command allows you to watch real-time the content of a log file.
    tail -f /var/log/messages
    or
    less +F /var/log/messages
    Other GUIs like xtail and xlogmaster can also do the same thing more elegantly.

Generating log messages from the command line or scripts
    logger -p facility.level -i -t "MessageTitle" "Message"
    (* not allowed as facility or level here) (-i option for adding the process PID)
Show the very start of kernel messages at boot-up

dmesg | less
   All kernel messages (including booting messages)
cat /proc/kmsg
   All kernel messages (including booting messages)

Stop generation of the -----MARK----- lines in the log files

good for laptops: to stop the frequent harddisk access when idle:
   start the syslogd with the option -m 0

logrotate

This program allows log files to be saved and compressed regularly based on their age or size. These parameters are defined in its configuration file: /etc/logrotate.conf

logrotate is designed to ease administration of systems that generate large numbers of log files. It allows automatic rotation, compression, removal, and mailing of log files. Each log file may be handled daily, weekly, monthly, or when it grows too large.

NOTE: The content of the configuration file is not needed for the LPI 102 exam.

Example of rotation and compression instructions:

```
compress
/var/log/messages {
 rotate 5
 weekly
 postrotate
 endscript
}
```

Make 5 weekly rotations of the file before deleting old ones.
Rotate weekly.
Run the following script after rotating:

```
/sbin/killall -HUP syslogd
```

Other possible log files (SuSE only)

/var/log/boot.msg

System hardware initialization log at boot-up. It records lilo and kernel boot messages till end of default runlevel initialization.

Ctrl-Alt-F10

Shows the kernel modules messages.

Examples of default configured log files:

/var/log/messages
   All messages except mail and auth
Topic 111: Administrative Tasks

/var/log/faillog
  System failures log file
/var/log/warn
  System warnings log file

Log file viewer under X-Windows (kde)

xtail
  Very good
xlogmaster
  Very good
kwatch
  hummm... buggy!!
1.111.4 Automate system administration tasks by scheduling jobs to run in the future

**Description:** Candidate should be able to use cron or anacron to run jobs at regular intervals and to use at to run jobs at a specific time. Task include managing cron and at jobs and configuring user access to cron and at services.

**Weight:** 4

Key files, terms, and utilities include:
- /etc/anacrontab
- /etc/at.deny
- /etc/at.allow
- /etc/crontab
- /etc/cron.allow
- /etc/cron.deny
- /var/spool/cron/*
- at
- atq
- atrm
- crontab

**at and cron services**

at is a service that checks for pre-programmed one-shot jobs, executes them on schedule and then erases them from the job queue.

cron is a service that checks every minute for scheduled repetitive jobs and executes them on schedule.

In short, at does one time jobs like a spool system and cron does jobs to be repeated at specific times.

**The cron/crontab service**

Cron executes specific commands in crontabs on a regular basis based on configuration created by root or users.

**Types of crontabs**

Crontabs are the configuration files read by the crond daemon defining which jobs should be run when.

**Users crontabs**

The users crontabs are created by the user issuing the command

```
crontab -e
```

It is not recommended to edit the user crontabs directly using an editor. Use crontab -e instead. Each user gets their own crontab file. Once written and saved, user crontabs are located in:

```
/var/spool/cron/tabs/username
```

SuSE
Topic 111: Administrative Tasks

/var/spool/cron/crontabs/username
RedHat, Debian, etc?
These crontab files contain only 6 fields.

System wide crontab file: /etc/crontab
The file /etc/crontab is used as the main system crontab. In this file crond daemon will execute the scheduled tasks and run them as the user specified for that task. For that an extra 'user' field (field 6) is used.
Therefore this crontab file contains 7 fields.

The /etc/cron.d/ directory
This directory contains extra crontabs of the same format as the /etc/crontab and will be recognized by crond.

The /etc/cron.{hourly,daily,weekly,monthly} directories
These directories contain scripts that will be run regularly according to their names. They are not directly read by crond but are usually run from /etc/crontab by the command run-parts

File format of the user crontab
This file may contain the following types of entries:

- Comments. These lines start with a '#'
- Environment variables definitions. eg. MAILTO=michel
- user cron schedule entries: made of 6 fields per line:

<table>
<thead>
<tr>
<th>minute</th>
<th>hour</th>
<th>dayofmonth</th>
<th>month</th>
<th>dayofweek</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>0-23</td>
<td>1-31</td>
<td>1-12</td>
<td>0-7(1=Mon)</td>
<td>&lt;valid command&gt;</td>
</tr>
</tbody>
</table>

File format of the system crontabs
This file format applies to /etc/crontab and /etc/cron.d/xxxxxx

- This file may contain the following types of entries:
- Comments. These lines start with a '#'
- Environment variables definitions. eg. MAILTO=admin
- user cron schedule entries: made of 7 fields per line:

<table>
<thead>
<tr>
<th>minute</th>
<th>hour</th>
<th>dayofmonth</th>
<th>month</th>
<th>dayofweek</th>
<th>[username]</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>0-23</td>
<td>1-31</td>
<td>1-12</td>
<td>0-7(1=Mon)</td>
<td>root</td>
<td>&lt;valid command&gt;</td>
</tr>
</tbody>
</table>

Rules for CRONTAB files
Cron jobs are checked every minute by the crond daemon.
A Crontab file can be a system or a user crontab.
System crontabs include the username field and the users crontabs don't.
A crontab entry (line) will be either a comment, an environment setting or a cron
A line starting with # is considered a comment.

An environment setting is in the form: VariableName = value

Each cron entry can be very long but MUST exist on a single physical line.

If the first character of a crontab line is a '-' then cron will not send a message to syslog each time the command is executed, otherwise it will.

A * in a field means the command is executable on every possible instance of that field.

Days of the week are numbers (0 to 7) and start on Sunday (0 or 7). Names of the weekdays can also be used: mon,tue,wed,thu,fri,sat,sun

'/' char. with a number, defines the steps size (default = 1). Examples:

    */10 * * * *
        every 10 minutes
    * 10-18/2 * * *
        from 10:00 to 18:00 at every 2 hours

The hours field uses the range of 0-23

Any output (incl. errors) from the scheduled jobs are sent to the local user's mail.

To not generate any mail then redirect the output (STDERR + STDOUT) of commands to /dev/null. eg.

    */2 * * * * ping -c www.suse.de &> /dev/null

or to avoid generating any mail for ALL of the processes started within this crontab, set the variable MAILTO to "". eg.

    MAILTO=""

The jobs will be executed by /bin/sh or the content of the Variable SHELL only if minute & hour & month & (day of the week or day of the month) match the current system time.

**Crontab commands**

    crontab -e
        create/edit a user crontab (scheduling) file (incl. root). The crontab program will save this file under the user's name in the /var/spool/cron/tabs/ directory. eg.

    /var/spool/cron/tabs/joe

    crontab -l
        Display user's crontab file.

    crontab -r
        Delete user's crontab file.

    crontab -e -u username
        Edit a user's crontab file (need to be root)

**Access control of cron scheduling service**

The crontab scheduling can be restricted to certain users and blocked for all others. This
Topic 111: Administrative Tasks

control is done via the files `/etc/cron.allow` and `/etc/cron.deny`.

If `cron.allow` exists then only users listed in it are allowed to use the cron service and the `/etc/cron.deny` file is ignored.

If `cron.allow` doesn't exist and `cron.deny` does exist, then all users are allowed to use the cron service except those listed in `cron.deny`.

**Examples of user crontabs**

Ranges of numbers are expressed with a '-' between numbers:

```
0 8-18 * * * /usr/X11R6/bin/xmessage -display :0 "Take a break"
```

Get the message "Take a break" every hour from 8 to 18 hours every day.

Commands can be grouped together inside () for redirections of standard output.

```
0,15,30,45 * * * * (echo -n "---";date) > /dev/console
```

Standard input entries can be expressed via the '%' in the command. Any additional '%' in the command line produces a new line (like /n in bash). Use '% to enter a literal '%':

```
30 11 31 12 * /usr/bin/wall%Happy new Year!%Lets meet and enjoy!
```

Range interval settings using '/' character. When a range of time-time or date-date is given, an interval between repetition can be set with the '/' character.

```
30 6-16/4 * * * /usr/X11R6/bin/xmessage -display :0 "Take medicine"
```

Gets a message "Take Medicine" every 4 hours(/4) on the half hour (30). This means at 6:30, 10:30, 14:30, 16:30 every day

Other simple examples:

```
-0 1 * * 1-5 updatedb
```

Runs the updatedb program every day, Monday to Friday at 01:00, and doesn't report to syslog ('-' at start of line)

```
0,10,20,30 12 * * 1,2 updatedb
```

Runs the updatedb program every Monday and Tuesday at:
12:00,12:10,12:20,12:30

```
*/10 * * * * root ping -c1 www.suse.de
```

Sends a ping once every 10 minutes (/10) to www.suse.de as user root. (The username entry is only in /etc/crontab)

**The anacron service**

anacron is a service similar to cron, except that its frequency is expressed in days and not in minutes. Unlike cron, it does not assume that the machine is running continuously. Hence, it can be used on machines that aren't running 24 hours a day, to control daily, weekly, and monthly jobs that are usually controlled by cron.

When executed, anacron reads a list of jobs from a configuration file, normally `/etc/anacrontab`. This file contains the list of jobs that anacron controls. Each job entry specifies a period in days, a delay in minutes, a unique job identifier, and a shell command.

For each job, anacron checks whether this job has been executed in the last n days, where n is the period specified for that job. If not, anacron runs the job's shell command, after
waiting for the number of minutes specified as the delay parameter. After the command exits, Anacron records the date in a special timestamp file for that job, so it can know when to execute it again. Only the date is used for the time calculations. The hour is not used.

The file /etc/anacrontab
The /etc/anacrontab file describes the jobs controlled by anacron. Entries are one line each and can be one of four kinds:

- job-description lines, environment assignments, empty lines or comments.
- Environment assignments, blank lines and comments are the same as for crontab.

Job-description lines are of the form:

```
period delay job-identifier command
```

- The period is specified in days
- The delay is specified in minutes
- The job-identifier can contain any non-blank character, except slashes '/'. It is used to identify the job in anacron messages, and as the name for the job's timestamp file.
- The command can be any shell command. Eg

```
1 5 cron.daily nice run-parts --report /etc/cron.daily
7 10 cron.weekly nice run-parts --report /etc/cron.weekly
30 15 cron.monthly nice run-parts --report /etc/cron.monthly
```

In this example, anacron runs all the scripts contained in the directory /etc/cron.daily, (using default nice value) every day as soon as the day has changed after it has waited for 5 minutes (delay). runs all the scripts contained in the directory /etc/cron.weekly, every week as soon as the 7th day has come after it has waited for 10 minutes. runs all the scripts contained in the directory /etc/cron.monthly, every month as soon as the 30th day has come after it has waited for 15 minutes.

The at spool service
at is a service (atd daemon) that checks its job queue every minute and executes the ones that are programmed to be run at that time.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>at</td>
<td>Runs a command only once at a predetermined time.</td>
</tr>
<tr>
<td>batch</td>
<td>command is only a script and does the same as at except that it executes commands when system load levels permit, in other words, when the load average drops below 0.8</td>
</tr>
</tbody>
</table>

Syntax:

```
at [options] time
batch [options] time
```
Topic 111: Administrative Tasks

How to launch an AT job

Type at and any options and time of execution

Enter the command(s) you want to run (press Enter after each command). Note: The commands MUST contain the full path of the command.

Press Ctrl-D to save the job(s).

at options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-b</td>
<td>Run command only when the system load is low</td>
</tr>
<tr>
<td>-d jobNr</td>
<td>Delete an at job from queue (same as atrm)</td>
</tr>
<tr>
<td>-f filename</td>
<td>Read job from a specified file</td>
</tr>
<tr>
<td>-l</td>
<td>List all jobs for that user. If user is root, shows all jobs.</td>
</tr>
<tr>
<td>-m</td>
<td>Mails user when job completes.</td>
</tr>
<tr>
<td>-q queueName</td>
<td>Send the jobs to a specific queue. Queue names are single letters:</td>
</tr>
<tr>
<td></td>
<td>a to z and A to Z.</td>
</tr>
<tr>
<td></td>
<td>a is the default and set highest AT priority (nice=2).</td>
</tr>
<tr>
<td></td>
<td>b is the default for batch command queues.</td>
</tr>
<tr>
<td></td>
<td>The higher the letter the higher the nice value (less priority):</td>
</tr>
<tr>
<td></td>
<td>nice of: a=2  b=4  c =6  d=8 etc.</td>
</tr>
</tbody>
</table>

Time formats

<table>
<thead>
<tr>
<th>Time Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>now</td>
<td>Well.... NOW!</td>
</tr>
<tr>
<td>17:00</td>
<td>At 17:00 hours</td>
</tr>
<tr>
<td>+3 hours</td>
<td>In 3 hours from now</td>
</tr>
<tr>
<td>+2 minutes</td>
<td>In 2 minutes from now</td>
</tr>
<tr>
<td>+2 days</td>
<td>Same time as now but In 2 days</td>
</tr>
<tr>
<td>+3 months</td>
<td>Same time as now but In 3 months</td>
</tr>
<tr>
<td>19:15 12.03.01</td>
<td>On 12 March 2001 at 19:15</td>
</tr>
<tr>
<td>now, noon, tea</td>
<td>Stated times</td>
</tr>
<tr>
<td>4PM</td>
<td>At 4 pm today if not too late, otherwise tomorrow at 4PM</td>
</tr>
<tr>
<td>16:00 + 3 days</td>
<td>At 16:00 hours in 3 days</td>
</tr>
<tr>
<td>mon</td>
<td>Next Monday same time. Days are:</td>
</tr>
<tr>
<td></td>
<td>mon, tue, wed, thu, fri, sat, sun</td>
</tr>
<tr>
<td>18:25 31 March 2001</td>
<td>On March 31 2001 at 18:25</td>
</tr>
</tbody>
</table>

Allowed date formats:

MMDDYY, MM/DD/YY, DD.MM.YY

atq

Show the AT jobs queue of user. Includes job numbers If user is root, shows all jobs.

Same as at -l
Topic 111: Administrative Tasks

**atrm**

```bash
ctrlr jobNr [jobNr] ...
```

Deletes an AT job from the jobs queue

**AT command on one line (useful in scripts)**

```bash
echo "command1;command2;..." | at time
```

Example:

```bash
xhost + localhost
echo "xmessage -display :0 'It works'" | at +1 minutes
watch -n1 atq
```

**Files involved**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/var/spool/atjobs</td>
<td>Where the jobs are stored. at Produces jobs starting with a if queue is not given (-q). These jobs are a snapshot of environment variables plus the commands given.</td>
</tr>
<tr>
<td>/var/spool/atspool</td>
<td>Unknown!!</td>
</tr>
<tr>
<td>/proc/loadavg</td>
<td>Average system load value that gives a one line display of the following information: The current time, how long the system has been running, how many users are currently logged on, and the system load averages for the past 1, 5, and 15 minutes.</td>
</tr>
<tr>
<td>/var/run/utmp</td>
<td>Uptime of the processes list in binary format. Used to determine the system load averages.</td>
</tr>
<tr>
<td>/etc/at.allow</td>
<td>List of users that are allowed to use the commands batch and at. If present: /etc/at.deny is ignored and all users listed here are allowed to use at.</td>
</tr>
<tr>
<td>/etc/at.deny</td>
<td>List of users that are NOT allowed to use the at and batch commands. If present and /etc/at.allow is NOT present, then all users are allowed to use at and batch except the ones listed here.</td>
</tr>
</tbody>
</table>

**Alternatives to at and Batch**

If the system is heavily loaded, consider another batch system like nqs.
1.111.5 Maintain an effective data backup strategy

Description: Candidate should be able to plan a backup strategy and backup file systems automatically to various media. Tasks include dumping a raw device to a file or vice versa, performing partial and manual backups, verifying the integrity of backup files and partially or fully restoring backups.

Weight: 3

Key files, terms, and utilities include:
- cpio
- dd
- dump
- restore
- tar

Types of backups

Generally, there are three different kinds of backup:

Full Backup

Backs up all files, regardless of whether they were previously backed up or not. This method uses the most media space. In this case it is recommended to use compression like gzip or other methods to reduce the media space needed.

Differential Backup

Saves only files that have been modified or created since the last Full Backup. Normally a Full backup is made and then regular differential Backups are performed.

Advantages: Only the full backup and the last good differential backup are needed to restore the whole of the data.

Disadvantages: Takes longer to make than incremental backups and needs larger media.

Incremental Backup

Saves only the files that have been changed or created since the last backup (Full or Differential).

Advantages: Shorter to make than the differential backups and needs smaller media size.

Disadvantages: All of the incremental backups, up to the last known good one, and the full backup are needed for restoring the whole data. If one of the incremental backups has some media fault, the entire backup may be unreliable.

Note: Normally a full backup is coupled with either periodic differential backups or periodic incremental backups.

Restoring data

With differential backups:

- The Full backup and the last good differential backup is needed.

1 - Read the full backup
Topic 111: Administrative Tasks

2 - Read last good differential backup.

With incremental backups:

The Full backup and ALL of the incremental backup are needed.

1 - Read the Full Backup
2 - Read sequentially each incremental backup up to the last good one.

Backup media devices files

To create backups, external media devices are needed. Here are some common ones used under Linux:

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/st0</td>
<td>First SCSI Tape Drive</td>
</tr>
<tr>
<td>/dev/ft0</td>
<td>First floppy-controller tape drive</td>
</tr>
<tr>
<td>/dev/fd0</td>
<td>First floppy disk drive</td>
</tr>
<tr>
<td>/dev/hdx</td>
<td>May be an ATAPI Zip or other removable disk</td>
</tr>
</tbody>
</table>

Basic backup programs

tar (Tape ARchive)

Recursively creates archives of files and directories including file properties.

It requires at least one mode option to function properly. Basic Mode options:

- `-c` Create a new archive.
- `-t` List the content of the archive
- `-x` Extract files from the archive.

Common Options:

Basic mode options

`f tarfile`

Unless tar is using standard I/O, use the 'f' option with tar to specify the tarfile. This might be simply a regular file or it may be a device such as /dev/st0.

`v`

Verbose mode. By default, tar runs silently. When 'v' is specified, tar reports each file as it is transferred.

`w`

Interactive mode. In this mode, tar asks for confirmation before archiving or restoring files. This option is useful only for small archives.

`z`

Enable compression. When using 'z', data is filtered through the gzip compression program prior to being written to the tarfile, saving additional space. The savings can be substantial, at times better than an order of magnitude depending on the data being compressed.
An archive created using the ‘z’ option must also be listed and extracted with ‘z’; tar will not recognize a compressed file as a valid archive without the ‘z’ option. Tarfiles created with this option will have the .tar.gz file extension.

BZ2 Compression. Similar to the 'z' compression except that it’s compression method is a bit more efficient on the media space used. The filename of the archive should then have the extension .tar.bz2

N date
Store only files newer than the date specified. This option can be used to construct an incremental or differential backup scheme.

V "label"
Adds a label to the .tar archive. Quotes are required to prevent the label from being interpreted as a filename. A label is handy if you find an unmarked tape or poorly named tarfile.

dump
From the BSD UNIX world, dump allows you to backup a whole partition or a full directory. But Linux dump is unique and written specially for ext2. Now a version for ReiserFS is also available.

dump searches through files and decides which ones should be written.

Output of dump:
Hard Disk, or Tape or File(Option -f)

Feature:
Span files on multiple medias.(medium change).

Max. Backup Levels: 10 (0-9)
Level 0: Full backup
Level 1-9: Incremental backup relative to the lower level backup.

Syntax:
dump [-level] [-ua] [-f BackupFile] Source

Options:
-level
0 to 9
-u
Update. Uses the file /etc/dumpdates to know which update to do.
-a
Automatically asks for next medium change.
-f BackupFile
Name of destination filename. Example:
/dev/st0 Tape drive.
Topic 111: Administrative Tasks

/bckp/backup01.dump Normal file.

Source
Device (partition) or directory name to backup.

The file /etc/dumpdates contains a list of backups already done. Format:

Source BackupLevel Date_Time
eg. /dev/sda5 0 Sat May 18 23:55:32 2003
     /dev/sda5 1 Mon May 20 23:54:13 2003

Shows that on Sat. May 18 a Full backup was made using the command:

    dump -0ua -f /dev/tape /dev/hda5

and an incremental backup relative to the Full backup using the command:

    dump -1ua -f /dev/tape /dev/hda5

**restore**

This program is the counterpart of the backup program dump. It is not only used for restoring but also to compare the backed-up data with the current original data.

Commonly used options are:

`restore -C -f BackupDevice`
Will compare (-C) the content of the BackupDevice (eg. /dev/st0) to the original and the differences will be shown.

`restore -i -f BackupDevice`
Will start in interactive (-i) mode and wait for commands relating to the list of files to restore. The most important commands are:

    cd Directory
    Changes to another directory on the backed-up medium.

    ls [Directory |file]
    Lists the current directory (like bash's ls)

    add Directory|File
    Add the Dir. or File in the list to restore.

    delete Directory|File
    Delete the Dir or File in the list to restore.

    extract
    Start the restoring the files listed.

    quit
    Exit restore program.

Important: When the restore is activated, its restores the files in the current directory. Therefore if files backed-up to /dev/st0 need to be restored to /dev/hda8 which is mounted on /mnt/data, you need to change the current directory to the mount point. Example:

    cd /mnt/data
    restore -r -f /dev/st0
Topic 111: Administrative Tasks

Here the full Backup located in /dev/st0 will be restored to the directory /mnt/data which is the mount point of /dev/hda8 partition.

Restoring single files:

```
restore -x -f BackupDevice File1 File2 File3
```

Restores File1 File2 File3 etc. from the BackupDevice to the current directory.

**cpio**

This back-up utility can handle different types of backup format including the TAR format. Its advantage over tar is that, it takes the list of the files to backup from STDIN instead of from the command line. This way it facilitates the use of the find program to feed the list of files to backup.

**cpio Modes of operation:**

- **copy-out** (-o)
  - The output of the program is an archive:
    - Backup

- **copy-in** (-i)
  - Files are extracted from the archive:
    - Restore

- **copy-pass** (-p)
  - Simple copy of files from one location to another:
    - Copy

**cpio works with a very large amount of options. They are not the goal of LPI-102.**

Here are some commonly used cpio options to remember:

- **-d**
  - Create directories if needed.

- **-f**
  - Specifies a filename

- **-t**
  - Shows the contents of an archive.

- **-u**
  - Overwrites existing files

- **-v**
  - Runs in verbose mode

**Examples of commands:**

```
cpio -iv < /dev/tape
```

The above command reads in files from a tape and displays them as it is operating.

```
find / -name mart* | cpio -pdv /home/martin/backups
```

Copy all files from the whole system which start with mart to the home subdirectory of martin, creating all the needed subdirectories (-d), using the verbose mode (-v).

```
find . -name ".*old" | cpio -ocBv >/dev/st0
```

88
Topic 111: Administrative Tasks

Backup (-o) all files with ext. .old, using the new (SVR4) portable format (-c) and the block size of 5120 Bytes(-B) to a tape drive (/dev/st0), using the verbose mode (-v).

cpio -icdv "*.c" < /dev/st0

Restore (-i) all the *.c files using the new (SVR4) portable format (-c), creating new subdirectories if needed (-d) from the tape drive (/dev/st0), using the verbose mode (-v).

find . -depth | cpio -pd /tmp/newdir

Copy (-p) recursively all files in current directory (.) to /tmp/newdir, creating all the needed subdirectories (-d).

**dd**

This DiskDump program allows you to read and write directly to and from a block device as well as normal files. It can copy data blocks directly from a device to a file and vice versa as well as device to device.

Syntax:

```
dd if=InputFile of=OutputFile bs=BlockSize count=NumberOfBlocks
```

Extra options:

```
ibs=InputBlockSize
obs=OutputBlockSize
```

Sets the input block size and the output block size when they differ.

The default for bs is the original block size of if=InputFile
The default for count is the whole device or file.

Examples:

To copy a full partition to a file:

```
dd if=/dev/hda4 of=/tmp/hda4_Image.img
```

To backup the current MBR to a file:

```
dd if=/dev/hda of=/var/backup/MBR.img bs=512 count=1
```

To create a CD image file from a CD-ROM:

```
dd if=/dev/cdrom of=/home/martin/images/cdrom2.img
```

To create a backup of partition to a Streaming Tape:

```
dd if=/dev/hda4 of=/dev/st0
```

To restore the above backup:

```
dd if=/dev/st0 of=/dev/hda4
```
1.111.6 Maintain system time

**Description:** Candidate should be able to properly maintain the system time and synchronize the clock over NTP. Tasks include setting the system date and time, setting the BIOS clock to the correct time in UTC, configuring the correct timezone for the system and configuring the system to correct clock drift to match NTP clock.

**Weight:** 4

Key files, terms, and utilities include:
- `/usr/share/zoneinfo`
- `/etc/timezone`
- `/etc/localtime`
- `/etc/ntp.conf`
- `/etc/ntp.drift`
- `date`
- `hwclock`
- `ntpd`
- `ntpdate`

**Time clocks under Linux**

Linux uses two clocks:

**Hardware Clock:**
- aka RTC, RealTimeClock, CMOS Clock, BIOS Clock. Runs independent of the Operating System and runs even when the computer is turned OFF, as long as the CMOS battery lasts.

**Software Clock:**
- aka System Clock. Runs via the system timer interrupt. Counts the number of seconds since 1st. Jan. 1970. Is the main clock under Linux. At boot time it reads the hardware clock and continues alone from there.

**Clock control programs**

Under Linux 2 main programs are used to control the 2 clocks.

- `hwclock`
  - Controls the Hardware Clock
- `date`
  - Controls the System Clock

**Time settings and zones**

There are 2 standard ways to set the clock.

**Local time**
- Time at this geographic location

**UTC**
- Universal Co-ordinate Time. Normal way of setting the time from which a time zone
Setting the time in Linux

The procedure is relatively simple:

1) Set the Hardware clock to UTC via the BIOS setup.
2) Set the environment variable TZ to the proper time zone using the script:

   `tzselect`

   Alternative step 2:
   Use the program tzconfig which will set a symbolic link in the form of:

   `ln -s /usr/share/zoneinfo/Europe/Berlin /etc/localtime`

3) To tell Linux that our Hardware clock and system clock are set to UTC run:

   `hwclock --utc --hctosys`

hwclock

This program is used to display or set the Hardware clock.

Syntax:

   `hwclock [option]`

Options: (only one of the following options is used at a time)

--show
   Read the Hardware Clock and print the time to Standard Output. The time shown
   is always in local time, even if you keep your Hardware Clock in Coordinated
   Universal Time (UTC).

--set
   Set the Hardware Clock to the time given by the --date option.

--hctosys
   Set the System Time from the Hardware Clock. Also set the kernel's timezone
   value to the local timezone as indicated by the TZ environment variable and/or /
   usr/share/zoneinfo. This is a good option to use in one of the system startup
   scripts.

--systohc
   Set the Hardware Clock to the current System Time.

--adjust
   Add or subtract time from the Hardware Clock to account for systemic drift since
   the last time the clock was set or adjusted.

--utc
   Indicates that the Hardware Clock is kept in Universal Coordinated Time.

--localtime
Topic 111: Administrative Tasks

Indicates that the Hardware Clock is kept in Local Time. It is your choice whether to keep your clock in UTC or local time, but nothing in the clock tells which you've chosen. So this option is how you give that information to hwclock.

**date**

This program is used to show or set the System time.

Syntax:

```
date [options]
```

Options:

```
+text_and_metacodes
```

Allows control of the display of the current time /and/or date. Example:

```
date "+It is now %H Hours and %M Minutes"
```

Will have the following result:

```
It is now 14 Hours and 33 Minutes
```

Interpreted sequences are:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%%</td>
<td>a literal %</td>
</tr>
<tr>
<td>%a</td>
<td>locale's abbreviated weekday name (Sun..Sat)</td>
</tr>
<tr>
<td>%A</td>
<td>locale's full weekday name, variable length (Sunday..Saturday)</td>
</tr>
<tr>
<td>%b</td>
<td>locale's abbreviated month name (Jan..Dec)</td>
</tr>
<tr>
<td>%B</td>
<td>locale's full month name, variable length (January..December)</td>
</tr>
<tr>
<td>%c</td>
<td>locale's date and time (Sat Nov 04 12:02:33 EST 1989)</td>
</tr>
<tr>
<td>%C</td>
<td>century (year divided by 100 and truncated to an integer) [00-99]</td>
</tr>
<tr>
<td>%d</td>
<td>day of month (01..31)</td>
</tr>
<tr>
<td>%D</td>
<td>date (mm/dd/yy)</td>
</tr>
<tr>
<td>%e</td>
<td>day of month, blank padded ( 1..31)</td>
</tr>
<tr>
<td>%F</td>
<td>same as %Y-%m-%d</td>
</tr>
<tr>
<td>%g</td>
<td>the 2-digit year corresponding to the %V week number</td>
</tr>
<tr>
<td>%G</td>
<td>the 4-digit year corresponding to the %V week number</td>
</tr>
<tr>
<td>%h</td>
<td>same as %b</td>
</tr>
<tr>
<td>%H</td>
<td>hour (00..23)</td>
</tr>
<tr>
<td>%I</td>
<td>hour (01..12)</td>
</tr>
<tr>
<td>%j</td>
<td>day of year (001..366)</td>
</tr>
<tr>
<td>%k</td>
<td>hour (0..23)</td>
</tr>
<tr>
<td>%l</td>
<td>hour (1..12)</td>
</tr>
<tr>
<td>%m</td>
<td>month (01..12)</td>
</tr>
<tr>
<td>%M</td>
<td>minute (00..59)</td>
</tr>
<tr>
<td>%n</td>
<td>a newline</td>
</tr>
</tbody>
</table>
### Topic 111: Administrative Tasks

<table>
<thead>
<tr>
<th>%N</th>
<th>nanoseconds (000000000..999999999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%p</td>
<td>locale's upper case AM or PM indicator (blank in many locales)</td>
</tr>
<tr>
<td>%P</td>
<td>locale's lower case am or pm indicator (blank in many locales)</td>
</tr>
<tr>
<td>%r</td>
<td>time, 12-hour (hh:mm:ss [AP]M)</td>
</tr>
<tr>
<td>%R</td>
<td>time, 24-hour (hh:mm)</td>
</tr>
<tr>
<td>%s</td>
<td>seconds since `00:00:00 1970-01-01 UTC' (a GNU extension)</td>
</tr>
<tr>
<td>%S</td>
<td>second (00..60); the 60 is necessary to accommodate a leap second</td>
</tr>
<tr>
<td>%t</td>
<td>a horizontal tab</td>
</tr>
<tr>
<td>%T</td>
<td>time, 24-hour (hh:mm:ss)</td>
</tr>
<tr>
<td>%u</td>
<td>day of week (1..7); 1 represents Monday</td>
</tr>
<tr>
<td>%U</td>
<td>week number of year with Sunday as first day of week (00..53)</td>
</tr>
<tr>
<td>%V</td>
<td>week number of year with Monday as first day of week (01..53)</td>
</tr>
<tr>
<td>%w</td>
<td>day of week (0..6); 0 represents Sunday</td>
</tr>
<tr>
<td>%W</td>
<td>week number of year with Monday as first day of week (00..53)</td>
</tr>
<tr>
<td>%x</td>
<td>locale's date representation (mm/dd/yy)</td>
</tr>
<tr>
<td>%X</td>
<td>locale's time representation (%H:%M:%S)</td>
</tr>
<tr>
<td>%y</td>
<td>last two digits of year (00..99)</td>
</tr>
<tr>
<td>%Y</td>
<td>year (1970...)</td>
</tr>
<tr>
<td>%z</td>
<td>RFC-822 style numeric timezone (-0500) (a nonstandard extension)</td>
</tr>
<tr>
<td>%Z</td>
<td>time zone (e.g., EDT), or nothing if no time zone is determinable</td>
</tr>
</tbody>
</table>

By default, date pads numeric fields with zeroes. GNU date recognizes the following modifiers between `%' and a numeric directive.

- `-` (hyphen)
  - do not pad the field
- `_` (underscore)
  - pad the field with spaces

### Time Parameters

- **MMDDhhmm**
  - Set the System time to a specific value
- **MMDDhhmmYYYY.[ss]**
  - Set the System time to a specific extended value.

**Note:** In the file `/etc/adjtime` the correction factor can be saved to keep the clock as accurate as possible.

### Network Time Service

This service is used to set the client clocks to a very precise clock. The service compensates for the delay introduced by TCP.
Topic 111: Administrative Tasks

Protocol:
   NTP

Methods:
   1) Cron job queries the time server using the ntpdate program.
   2) Local daemon (ntpd or xntpd) runs on client and polls the time server.
      Note: This solution transforms the client to a Time Server.

ntpdate
This program connects with a Time Server and sets the System time.
Syntax:
   ntpdate TimeServerName
   Normally it is regularly called from a cron job. Eg:
   10 * * * * root /usr/sbin/ntpdate ntp3.fau.de
Note: A list of time servers on the Internet is located at:
   http://www.eecis.udel.edu/~mills/ntp/clock1a.html

ntpd or xntpd
These daemons poll one or more Time Server(s) every 5 minutes and sets the system time.
Configuration file:
   /etc/ntp.conf
Example contents:
   server ntp3.fau.de
driftfile /etc/ntp.drift
This driftfile will store the local Hardware Clock drift and will be used at boot time to set
local System Clock to a more accurate time till a connection to a Time Server is achieved.
Note1: If the local time has drifted off more than 1000 seconds then a syslog message is
generated and the clock must be set manually.
Note 2: It is also possible to use both methods: ntpd and ntpdate at the same time.
Topic 112: Networking Fundamentals

Total weight for this topic 14

1.112.1 Fundamentals of TCP/IP ......................................................... 4
1.112.3 TCP/IP configuration and troubleshooting ............................. 7
1.112.4 Configure Linux as a PPP client ........................................ 3

Summary

TODO
Topic 112: Networking Fundamentals

1.112.1 Fundamentals of TCP/IP

**Description:** Candidates should demonstrate a proper understanding of network fundamentals. This objective includes the understanding of IP-addresses, network masks and what they mean (i.e. determine a network and broadcast address for a host based on its subnet mask in "dotted quad" or abbreviated notation or determine the network address, broadcast address and netmask when given an IP-address and number of bits). It also covers the understanding of the network classes and classless subnets (CIDR) and the reserved addresses for private network use. It includes the understanding of the function and application of a default route. It also includes the understanding of basic internet protocols (IP, ICMP, TCP, UDP) and the more common TCP and UDP ports (20, 21, 23, 25, 53, 80, 110, 119, 139, 143, 161).

**Weight:** 4

Key files, terms, and utilities include:
- /etc/services
- ftp
- telnet
- host
- ping
- dig
- traceroute
- whois

### OSI and TCP/IP models

<table>
<thead>
<tr>
<th>OSI Model</th>
<th>TCP/IP Stack</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Process</td>
<td>FTP, Telnet, SSH, HTTP,...</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Host to Host</td>
<td>TCP, UDP</td>
</tr>
<tr>
<td>Transport</td>
<td>Internetwork</td>
<td>IP, ICMP, ARP, OSPF, EGP</td>
</tr>
<tr>
<td>Network</td>
<td>Network Interface</td>
<td>Ethernet, FDDI, AAL5, PPP, PPPoE</td>
</tr>
<tr>
<td>Data Link</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td>Ethernet Frame</td>
</tr>
</tbody>
</table>

Examples:

![TCP/IP layer structure](image)

*Fig. 1 TCP/IP layer structure*
TCP header

<table>
<thead>
<tr>
<th>Bits</th>
<th>Source Port</th>
<th>Destination Port</th>
<th>Sequence Number</th>
<th>Acknowledgement Number</th>
<th>Window</th>
<th>Options</th>
<th>Padding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Offset</td>
<td>Reserved</td>
<td>Flags</td>
<td>Window</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>checksum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Fig. 2 TCP protocol header**

UDP header

<table>
<thead>
<tr>
<th>Bits</th>
<th>Source Port</th>
<th>Destination Port</th>
<th>Length</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Fig. 3 UDP header**

IP Header

<table>
<thead>
<tr>
<th>Bits</th>
<th>Version</th>
<th>IHL</th>
<th>Type of Service</th>
<th>Total Length</th>
<th>Identification</th>
<th>Flags</th>
<th>Fragment Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Fig. 4 IP header**

TCP/IP Network Tools

**ping**

Sends an ICMP Packet (type 8) to verify the presence of a remote host. The remote host normally sends an ICMP packet (Type 0) back.

**traceroute**

Displays the Names/IP of routers encountered to a remote destination.

**whois**
Topic 112: Networking Fundamentals

Asks a whois server (RFC 812) for the owner and administrator of a DNS Domain.

host, nslookup, nsquery, dig

Ask a DNS (Name Server) to translate an FQDN to an IP or reverse.

Example

dig . ns

Displays the list of all ROOT DNS Servers. (hint types servers)

### IP Addresses Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Start Address</th>
<th>End Address</th>
<th>Netmask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Internet Addresses (Unicast=Single machine)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1.0.0.0</td>
<td>127.255.255.255</td>
<td>255.0.0.0</td>
</tr>
<tr>
<td>B</td>
<td>128.0.0.0</td>
<td>191.255.255.255</td>
<td>255.255.0.0</td>
</tr>
<tr>
<td>C</td>
<td>192.0.0.0</td>
<td>223.255.255.255</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Reserved Addresses (Internet Non-Route-able Addresses=Reserved for Intranet) per RFC 1597</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>10.0.0.0</td>
<td>10.255.255.255</td>
<td>255.0.0.0</td>
</tr>
<tr>
<td>B</td>
<td>172.16.0.0</td>
<td>172.31.255.255</td>
<td>255.255.0.0</td>
</tr>
<tr>
<td>C</td>
<td>192.168.0.0</td>
<td>192.168.255.255</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Special Addresses (Reserved)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>224.0.0.0</td>
<td>239.255.255.255</td>
<td>(Multicasting-Groups)</td>
</tr>
<tr>
<td>RIPv2</td>
<td>224.0.0.9</td>
<td>All RIPv2 Routers</td>
<td></td>
</tr>
<tr>
<td>OSPF</td>
<td>224.0.0.5</td>
<td>All OSPF Routers</td>
<td></td>
</tr>
<tr>
<td>OSPF</td>
<td>224.0.0.6</td>
<td>Some OSPF Routers</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>240.0.0.0</td>
<td>255.255.255.255</td>
<td>(Internet Administration)</td>
</tr>
</tbody>
</table>

### ICMP Messages

**Error Messages**

3  Destination unreachable
4  Source quench
5  Redirect
11  Time exceeded
12  Parameter Problem

**Information Messages**

0  Echo reply
8  Echo request
13  Time stamp
TCP/IP Services

Also found in /etc/services

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Transport Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>FTP-Data</td>
<td>TCP</td>
<td>Data Channel of FTP Connection.</td>
</tr>
<tr>
<td>21</td>
<td>FTP</td>
<td>TCP</td>
<td>Control Channel of FTP Connection.</td>
</tr>
<tr>
<td>22</td>
<td>SSH</td>
<td>TCP or UDP</td>
<td>Secure Shell</td>
</tr>
<tr>
<td>23</td>
<td>TELNET</td>
<td>TCP</td>
<td>Terminal Emulation over Network</td>
</tr>
<tr>
<td>25</td>
<td>SMTP</td>
<td>TCP</td>
<td>Simple Mail Transfer Protocol</td>
</tr>
<tr>
<td>53</td>
<td>DNS</td>
<td>TCP or mostly UDP</td>
<td>Domain Name Server</td>
</tr>
<tr>
<td>80</td>
<td>WWW/HTTP</td>
<td>mostly TCP or UDP</td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td>110</td>
<td>POP3</td>
<td>TCP or UDP</td>
<td>Post Office Protocol</td>
</tr>
<tr>
<td>119</td>
<td>NNTP</td>
<td>TCP</td>
<td>Net News Transfer Protocol</td>
</tr>
<tr>
<td>139</td>
<td>NetBIOS-SSN</td>
<td>TCP or mostly UDP</td>
<td>Windows Network Session Service</td>
</tr>
<tr>
<td>143</td>
<td>IMAP2</td>
<td>TCP or UDP</td>
<td>Interim Mail Access Protocol (Encrypted)</td>
</tr>
<tr>
<td>161</td>
<td>SNMP</td>
<td>UDP</td>
<td>Simple Network Management Protocol</td>
</tr>
</tbody>
</table>

TODO:
Extra subjects treated in LPI 102 but not described here:
- Netmask and Subnetting, including CIDR
- Routing fundamentals including default gateway
1.112.3 TCP/IP configuration and troubleshooting

**Description:** Candidates should be able to view, change and verify configuration settings and operational status for various network interfaces. This objective includes manual and automatic configuration of interfaces and routing tables. This especially means to add, start, stop, restart, delete or reconfigure network interfaces. It also means to change, view or configure the routing table and to correct an improperly set default route manually. Candidates should be able to configure Linux as a DHCP client and a TCP/IP host and to debug problems associated with the network configuration.

**Weight:** 7

Key files, terms, and utilities include:
- `/etc/HOSTNAME` or `/etc/hostname`
- `/etc/hosts`
- `/etc/networks`
- `/etc/host.conf`
- `/etc/resolv.conf`
- `/etc/nsswitch.conf`
- `ifconfig`
- `route`
- `dhcpcd`, `dhcpclient`, `pump`
- `hostname` (domainname, dnsdomainname)
- `netstat`
- `ping`
- `traceroute`
- `tcpdump`
- and the network scripts run during system initialization.

**Networking configuration files**

- `/etc/HOSTNAME` or `/etc/hostname`
  - Contains the name (FQDN) of the present host

- `/etc/hosts`
  - Contains a translation table of IPs and equivalent hostnames. A short and/or a long name(s) per IP.
  - Was used to list all hosts on the Internet before DNS was developed. Can now be used to list all machines on local intranet, as well as hosts in Internet accessed frequently.

- `/etc/networks`
  - Contains a translation table of Network Addresses and equivalent Network name(s)

- `/etc/host.conf`
  - Contains the sequence that the local resolver should follow for translating a name to an IP (resolving).
  - Examples:
    - `multi on`
      - Multiple names are allowed per host
    - `order host bind`
Topic 112: Networking Fundamentals

First try to resolve using /etc/hosts then use DNS queries

/etc/nsswitch.conf
Same purpose but more refined function as /etc/host.conf.

/etc/resolv.conf
List of search domains for resolving short names and list of (max 3) of IP of NameServers to resolve FQDNs.
Example:

```text
search linux.local
domain linux.local (deprecated)
nameserver 194.25.2.129
nameserver 192.76.144.66
nameserver 145.253.2.171
```

Networking tools

ping
Sends an ICMP Packet (type 8) to verify the presence of a remote host. The remote host normally sends an ICMP packet (Type 0) back.

traceroute
Displays the Names/IP of routers encountered to a remote destination.

whois
Asks a whois server (RFC 812) for the owner and administrator of a Domain.

host, nslookup, nsquery, dig
Ask a DNS (Name Server) to translate an FQDN to an IP or reverse. eg.

dig . ns
Displays the list of all ROOT DNS Servers. (hint types servers)

hostname
Displays different parts or all of the local host FQDN.

domainname
Displays the local NIS domain name (different from DNS name)

dnsdomainname
Displays the local DNS Domain Name.

ifconfig
Tool to configure or turn OFF the network interface. eg.
    ifconfig eth0 192.168.100.60 up

route
Tool to display and set and erase entries in the routing table

netstat
Tool to display a variety of network information including
Topic 112: Networking Fundamentals

Routing Table
UNIX and TCP/IP Sockets
Ports in listening mode
Present TCP/UDP connections status

tcpdump
A network sniffer program to display the content of network packets.
dhcpcd
DHCP client program (The one used by SuSE)
pump
DHCP client program (The one used by RedHat)
dhclient
ISC DHCP client program. With extended functions compare to the above two DHCP clients.

Boot time scripts
These scripts are part of the runlevel system and are run at boot time to configure the
network devices and get services ready for operation. They are normally located in:
/etc/init.d/*

These scripts often use configuration files located in /etc/ or subdirectories of /etc.
Example:
/etc/sysconfig/network/*

Frontends for ifconfig and route (ifup and ifdown) are often used to configure the network
interface – usage is easier than on the command line.

TODO:
Extra subjects treated in LPI 102 but not described here
- Parameters and options of all the network tools
- ftp commands
- Parameters of /etc/nsswitch.conf
- Parameters of ifconfig
- Parameters of route
- Options of netstat and their results meanings.
- How ifup and ifdown get called and how they work
- DHCP server configuration
- DHCP Clients parameters
- Function and configuration of DHCP
- Parameters of /etc/host.conf
- Parameters of /etc/resolv.conf
Topic 112: Networking Fundamentals

Options of tcpdump
1.112.4 Configure Linux as a PPP client

**Description:** Candidates should understand the basics of the PPP protocol and be able to configure and use PPP for outbound connections. This objective includes the definition of the chat sequence to connect (given a login example) and the setup commands to be run automatically when a PPP connection is made. It also includes initialization and termination of a PPP connection, with a modem, ISDN or ADSL and setting PPP to automatically reconnect if disconnected.

**Weight:** 3

Key files, terms, and utilities include:
- `/etc/ppp/options.*`
- `/etc/ppp/peers/*`
- `/etc/wvdial.conf`
- `/etc/ppp/ip-up`
- `/etc/ppp/ip-down`
- `wvdial`
- `pppd`

**Connection protocols**

Most TCP/IP connections use one of the following connection protocols:
- Ethernet with MAC address (ARP protocol)
- SLIP (Serial Line IP): Older and almost not any more used
- PPP (Point to Point Protocol) Mostly used.

**PPP Protocol**

This protocol allows a connection from on host to another via a Point-to-Point Protocol. It can also be used to connect to a host which is a gateway to the Internet. This is the way it is mostly used these days.

PPP Protocol comes in different versions:
- `PPP` for Analog Modems
- `syncPPP` for ISDN
- `PPPoE` for SDL

**Sequence of PPP connection build-up**

1 - Modem connection build-up
2 - PPP Connection via Login chat script
3 - PPP Connection set-up

**Modem connection build-up**

The modem connection build-up is usually done by controlling the analog/ISDN/DSL Modem in order to establish contact between the local and a remote modem. With analog modems this control is achieved via 'AT' (Hayes compatible) commands sent to the modem. After each command, if it is successful, the modem answers with an 'OK'.
Example:

```
ATZ
 Reset the modem to User Settings
AT&F
 Reset the modem to Factory Settings
ATD0017853
 Dial the number 0017853
```

Once the Modems have synchronized, the local modem sends a message that contains the word CONNECT (eg. CONNECT 28800) to the dialer. Once the modems have connected and synchronized, they become transparent and simulate a simple serial cable connection between the 2 hosts.

The modem connection is then established.

**PPP Connection via login chat script**

Once the modem connection is completed, the remote getty program (in the ppp server) will then send the message Login: and wait. At this point the pppd daemon needs to be started with its positional parameters which sets:

- The Login program and parameters
- The device connected to the modem
- The speed of connection

Example:

```
pppd "chat -f /etc/ppp/provider" /dev/ttyS1 38400
```

Using the Login script (/etc/ppp/provider) the local chat program will start answering the remote getty with the Login Name and its respective password. When the chat program finishes its script successfully, the ppp connection is established.

The authentication protocols supported by the login are:

- PAP, CHAP, MSCHAP

**PPP Connection set-up**

As soon as the login connection is established, pppd starts the shell script /etc/ppp/ip-up including the following list of positional parameters.

Syntax:

```
ip-up InterfaceName Device Speed Local_IP Remote_IP
```

Example:

```
ip-up /dev/ttyS1 /dev/ppp0 38400 136.36.27.93 42.94.78.35
```

This script will take care of some of the necessary preparations including:

- Writing the proper nameserver IPs in /etc/resolv.conf if needed
- Start the firewall if needed
- Starting any other needed process if needed.
The PPP connection is then established.

Note: After the pppd has shut down the connection, it starts the /etc/ppp/ip-down script, which is a symbolic link to ip-up.

**The dialer wvdial**

This dialing program will take charge of:
- Dialing the modem with AT commands
- Answering the remote getty with Name and Password (the chat program is not needed)
- Start the pppd daemon. The pppd daemon is responsible for starting the ip-up and ip-down scripts.

Its configuration file:
/etc/wvdial.conf

Content of /etc/wvdial.conf:

[Dialer Defaults]
Default dialing parameters for all connections.

[Dialer ProviderName]
Dialing parameters for this provider connection.

Example:

[Dialer Defaults]
Modem = /dev/modem
Baud = 57600
Init1 = ATZ
Dial Command = ATDT
Idle Seconds = 360
Phone = 0192479264
Username = michel
Password = mypasswd

[Dialer provider1]
Phone = 0987654321
Username = hans
Password = hanspasswd

[Dialer provider2]
Phone = 0918273645
Login Prompt = mariette:
Username = imueller
Password = pw5Xvg$

**Extra wvdial options for pppd**

With some of the latest pppd daemons the presence of wvdial options file /etc/ppp/peers/wvdial is also needed: to add a few options to pppd.

Example of content of /etc/ppp/peers/wvdial

noauth
name wvdial
replacedefaultroute
pppd options

pppd daemon uses the general options file /etc/ppp/options. It uses also the individual network interface options file /etc/ppp/options.InterfaceName if it exists.

Example:

/etc/ppp/options.modem

for the /dev/modem interface.

Content of /etc/ppp/options file

This file contains the pppd operating options. These options can also be given on the command line with the pppd command.

See man pppd for a list of options available.

Shutting down a ppp connection

To shut down a ppp connection, we only need to kill the pppd process. The most appropriate way to do this is to send the signal -INT to pppd.

kill -INT $(cat /var/run/ppp0.pid)

Kills the pppd process responsible for the ppp0 connection.
### Topic 113: Networking Services

**Total weight for this topic**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.113.1</td>
<td>Configure and manage inetd, xinetd, and related services.</td>
<td>4</td>
</tr>
<tr>
<td>1.113.2</td>
<td>Operate and perform basic configuration of sendmail.</td>
<td>4</td>
</tr>
<tr>
<td>1.113.3</td>
<td>Operate and perform basic configuration of Apache.</td>
<td>4</td>
</tr>
<tr>
<td>1.113.4</td>
<td>Properly manage the NFS, smb, and nmb daemons.</td>
<td>4</td>
</tr>
<tr>
<td>1.113.5</td>
<td>Setup and configure basic DNS services.</td>
<td>4</td>
</tr>
<tr>
<td>1.113.7</td>
<td>Set up secure shell (OpenSSH).</td>
<td>4</td>
</tr>
</tbody>
</table>

### Summary

**TODO**
1.113.1 Configure and manage inetd, xinetd, and related services

Description: Candidates should be able to configure which services are available through inetd, use tcpwrappers to allow or deny services on a host-by-host basis, manually start, stop, and restart internet services, configure basic network services including telnet and ftp. Set a service to run as another user instead of the default in inetd.conf.

Weight: 4

Key files, terms, and utilities include:

/etc/inetd.conf
/etc/hosts.allow
/etc/hosts.deny
/etc/services
/etc/xinetd.conf
/etc/xinetd.log

Services are made available via daemons running in the background. Some services are needed infrequently and running a separate daemon for them wastes system resources. Such services can be gathered under one main daemon which watches the service ports and starts the appropriate program when a client of that service requests attention. This watching daemon is called a ‘superdaemon’. There are two versions of this type of superdaemons: inetd (older, less secure) and xinetd (newer, more secure).

inetd

This daemon uses the settings in its configuration file /etc/inetd.conf to determine which service ports will be watched and which service programs are associated with them. When a service port receives a request from a client, inetd can be configured to use a tcpwrapper which will check if the client host is allowed to use this service before the service program is started.

The configuration file inetd.conf

Each port that needs to be watched gets one configuration line. The parameters are separated with spaces or TABs. Here is the configuration line format:

```
service socketType protocol wait user program arguments
```

```
ftp stream tcp nowait root /usr/sbin/tcpd wuftp

telnet stream tcp nowait root /usr/sbin/tcpd telnetd
```

```
service
 name of the service referenced in the file /etc/services

socket
 can be stream, dgram, raw, rdm or seqpacket

 stream
 TCP

dgram
 UDP

raw
```
Topic 113: Networking Services

raw format
rdm
Reliable Delivered Message
seqpacket
Sequenced Packet Socket

wait
Can be wait or nowait Tells inetd whether it should wait for the server to come back before accepting another client connection.

nowait is used for multi-threaded services(most services)
wait is used for single-threaded services(some UDP services), eg: comsat, biff, talkd and tftpd

user
Which local user will be the owner of the service process.

program
Program to start to provide the service (normally the tcpd tcpwrapper)

arguments
Either the service program as arguments for the tcpd tcp wrapper or the service program itself without tcpwrapper...NOT recommended.

xinetd
This more recent superdaemon allows for more flexibility and security. It uses one main configuration file /etc/xinetd.conf which can be extended to multiple service definition files via the parameter includedir.

includedir /etc/xinetd.d
All files in the /etc/xinetd.d/ directory.

Advantages of xinetd over inetd
xinetd uses the control files (hosts.allow and hosts.deny) directly without the need to use the tcpwrapper tcpd.
Limits the connections either general, per client or per service
Certain clients can be given certain services vs. others
Protection against DenialOfService attacks
Produces its own log files independently from syslogd
Possibility to redirect incoming requests to another server (eg. in a DMZ)
Full support of IPv6
Interaction with the client: Messages different for success vs. failure to connect.

xinetd.conf
To convert the service definition parameters from inetd format to xinetd format, the tool
xconv.pl can be used. It is delivered with the xinetd package.

The xinetd.conf contains the default and per-service definitions. The default definitions are used for all of the services. In case of conflict with the per-service definition, the per-service definition is used. For example for defaults and ftp service

```plaintext
defaults
{
 instances = 15
 log_type = FILE /var/log/xinetd.log
 log_on_success = HOST PID USERID DURATION EXIT
 log_on_failure = HOST USERID RECORD
 only_from = 192.0.0.0/8
 disabled = shell login exec comsat
 disabled += telnet ftp
 disabled += name uucp tftp
 disabled += finger systat netstat
}

service ftp
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/in.ftpd
 server_args = -l
 instances = 4
 access_times = 7:00-12:30 13:30-21:00
 nice = 10
 only_from = 192.168.1.0/24
 disabled = yes
}
```

Deactivated parameters starts the line with a '#'. The parameters meanings are somewhat similar to the inetd.conf but allows for more flexibility. The service definition block starts with the word service followed by the service name, then all of the parameters for this service are enclosed within curly brackets. '{....}'. The parameter disable = yes says that the service is disabled. It must be set to no to enable it.

- = sets the value,
+ = adds the value (to default values),
- = deletes the value (from default values)

### tcpwrappers

The tcpwrappers are programs that use configuration files to check if the client host is allowed to use the requested service. One commonly used tcpwrapper is tcpd.

It uses the /etc/hosts.allow and /etc/hosts.deny files for this purpose. They contain a listing of hosts allowed to use each service. Here is the logic:

If neither file exists, then all hosts are allowed to use all watched services.

The access control software consults two files. The search stops at the first match:

Access will be granted when a (daemon, client) pair matches an entry in the /etc/hosts.allow file.
Topic 113: Networking Services

Otherwise, access will be denied when a (daemon, client) pair matches an entry in the /etc/hosts.deny file.

Otherwise, access will be granted.

The command tcpdchk will verify the syntax of /etc/hosts.allow and /etc/hosts.deny files.

Format of hosts.allow and hosts.deny:

Syntax:

daemon: [client1].... [EXCEPT client2 [client3] ....]

Examples:

ALL: LOCAL @some_netgroup
ALL: .foobar.edu EXCEPT terminalserver.foobar.edu
in.fingerd: .mydomain.com EXCEPT hacker.mydomain.com
vsftpd: .mylocal.domains

Wildcards

The access control language supports explicit wildcards:

ALL

The universal wildcard, always matches.

LOCAL

Matches any host whose name does not contain a dot character.

UNKNOWN

Matches any user whose name is unknown, and matches any host whose name or address are unknown. This pattern should be used with care: host names may be unavailable due to temporary name server problems. A network address will be unavailable when the software cannot figure out what type of network it is talking to.

KNOWN

Matches any user whose name is known, and matches any host whose name and address are known. This pattern should also be used with care for the same reasons as for UNKNOWN.

PARANOID

Matches any host whose name does not match its address. When tcpd is built with -DPARANOID (default), it drops requests from such clients even before looking at the access control tables. Build without -DPARANOID when you want more control over such requests.

And finally, there are some wildcards you can use:

ALL matches everything. If in daemon_list, matches all daemons; if in client_list, it matches all host names.

ALL: ALL

would match any machine trying to get to any service.

LOCAL matches host names that don't have a dot in them.

ALL: LOCAL
Topic 113: Networking Services

would match any machine that is inside the domain or search aliases given in your
/etc/resolv.conf

EXCEPT isn't really a wildcard, but it comes in useful. It excludes a pattern from the
list.

ALL : ALL except .leetin-haxor.org

would match all services to anyone who is not from *.leetin-haxor.org

The rules for determining host patterns are pretty simple, too:

If you want to match all hosts in a domain, put a `.` at the front.

bar.com will match "foo.bar.com", "sailors.bar.com", "blue.oyster.bar.com", etc.

If you want to match all IPs in a domain, put a "." at the end.

192.168.1. will match "192.168.1.1", "192.168.1.2", "192.168.1.3", etc.

See man hosts_access for more information.
Topic 113: Networking Services

1.113.2 Operate and perform basic configuration of sendmail

Description: Candidate should be able to modify simple parameters in sendmail configuration files (including the “Smart Host” parameter, if necessary), create mail aliases, manage the mail queue, start and stop sendmail, configure mail forwarding and perform basic troubleshooting of sendmail. The objective includes checking for and closing open relay on the mail server. It does not include advanced custom configuration of Sendmail.

Weight: 4

Key files, terms, and utilities include:
- /etc/aliases or /etc/mail/aliases
- /etc/mail/*
- ~/.forward
- mailq
- sendmail
- newaliases

LPI-102 Doesn't require deep knowledge of sendmail. Just the configuration of a simple mail server.

Mail system components

TODO: Define each of these correctly.

MTA - Mail Transfer Agent
- Programs under Unix/Linux: postfix, sendmail, qmail, exim, smail

MDA - Mail Delivery Agent or LDA - Local Delivery Agent
- Programs under Unix/Linux: mail, procmail, local (Postfix), qmail-local

MUA - Mail User Agent
- MUAs under Unix/Linux: mail, pine, mutt, kmail(KDE), balsa (Gnome), evolution (Gnome)
- MUAs under Windows: Eudora, Outlook Express, MS Outlook, Netscape Composer

SMTP Principle

The principle of an SMTP server is that the SMTP daemon runs in the background and watches port 25. A requesting client initiates the contact and then sends the mails. The server will then either save the mails in the local mailboxes or relay them to their destinations by forwarding to the proper remote SMTP server. In the process of reception of mails, a series of checks as well as mail headers content changes can be performed. It all depends on the configuration of the mail server.

sendmail configuration file

The main configuration file of sendmail is /etc/sendmail.cf

Because of its complexity, this file is normally not manually created or edited. Frontends exist that use a much simpler syntax and these update sendmail.cf. Some minor changes can be done directly without complications.
sendmail mailboxes

There are 2 types of mailboxes for sendmail:

Outgoing queue:
/var/spool/mqueue or /var/mqueue
    Used by MUAs for sending mails. Their content is checked regularly and sent to their destinations. The program mailq (symlink to sendmail) is used to display the content of this mail queue.

Incoming queue:
/var/spool/mail/UserName
    Used by the MTA to store the incoming mails. The local MUA also looks in this directory (belonging to the user running the MUA) and displays it. The POP and IMAP servers are also looking in this directory to pick-up the mail and send it to the requesting client.

Starting sendmail

The main purpose of sendmail is to receive mail and save the mail in local mailboxes or send the mail to another mail server (relaying). As far as relaying is concerned, there are two possibilities: either the host is permanently connected to the Internet where it has a FQDN name, a fixed IP address or it is temporarily connected to the Internet and used only to send mails.

Permanent Internet connection

In this case sendmail has 2 functions:

    Receiving mails via SMTP protocol
    Sending mails via SMTP protocol.

For receiving mails, sendmail needs to be running as a daemon in the background and watching port 25 (SMTP). The incoming mails are always received immediately. Normally a command line option is given for sendmail to regularly check and process the mails in the outgoing mail queue. (mqueue)

    sendmail -bd -q15
    Sendmail is started as daemon (-bd) and checks the outgoing mail queue every 15 minutes. (-q 15)

Temporary Internet connection

In this case sendmail is only used to send mails. It is normally called after the Internet connection has been established. The incoming mails are handled by fetchmail or other mail retrieving programs.

    sendmail -q
    Sendmail is started and checks the mails in the outgoing queue, sends them if any are present and exits when finished. This command can also be regularly called by a cron job.

    sendmail -bd
Sendmail is started in daemon mode to receive incoming mails.

sendmail -q

Sendmail starts as a daemon and watches the SMTP port and receives incoming mails. Outgoing mails can still be regularly be sent via a cron job as above.

**Mail Aliases**

Mail addressed to a non-existent user can be redirected to an existing local user. They are then called aliases of the real user.

Example: martin.hoofer@mybestmail.com sent to the local user martinh

These aliases are stored in `/etc/aliases` or `/etc/mail/aliases`.

aliases file syntax:

```
AliasName: RealUserName
```

Example:

```
martin.hoofer: martinh
webmaster: root
abuse: root
```

Note1: Aliases are only applicable to incoming mails to local users.

Note2: When changes are made to this file, you need to issue the command: `newaliases` as well as restart the sendmail daemon if needed.

**Piping mails to programs**

It is also possible to send the incoming mail to a specific local program. It is done using the same above file: `/etc/aliases`.

```
harry: "| /usr/bin/mail -s 'Forwarded mail' harry2@remoteserver.com"
```

The mail is sent to the local mail program which sends it on to its proper destination.

**Redirecting incoming mail**

The previous example shows one method of redirecting incoming mail to a remote mail server. Another method is via the file `~/.forward`. This file is written in the home directory of the local user and his incoming mails will all be sent to:

```
another local user. Example:

hans
```

appended to a local file (the file must be writable by the user). Example:

```
"/var/spool/mail2/peter"
```

piped to a local program (like in the above example of `/etc/aliases`). Example:

```
"| /usr/bin/antiviruschk"
```
Outgoing mail server

Sendmail can be configured to send mail to 2 different types of remote hosts:

- Direct to the destination address or
- Via a 'Smart Host' which will take care of sending the mail to its destination. This method is very often used by Internet Mail providers.

Direct to the destination address:

To achieve this, a proper DNS must be reachable to reach the proper destination hosts.

Via a 'Smart Host'

In this case all of the outgoing mails are sent to this host. In turns this 'Smart Host' must have the proper configuration of a DNS to reach the proper destinations.

The choice between the 2 above method requires an entry in the main sendmail configuration file /etc/sendmail.cf:

```
DS <SmartHostName>
```

To send mail via a 'Smart host'

```
DS
```

To send mail directly to their destinations.

Files in /etc/mail/ Directory

Files in this directory are meant to configure sendmail. They are of 2 types:

- Configuration files in text format.
- Database files in binary format. (xxxxx.db)

The databases are the configuration files converted to a binary (.db) format. Sendmail doesn't directly read the text configuration files in this directory. They need to be converted using the makemap command:

```
makemap hash -f /etc/mail/virtusertable.db < /etc/mail/virtusertable
```

Access control of incoming mail

The control of which host is allowed to send mail to the local mail server is done via the file:

```
/etc/mail/access
```

Syntax:

```
Hostname AccessType
Domain AccessType
IPNo. AccessType
```

AccessTypes: OK, RELAY, etc. Examples:

```
127 RELAY
192.168.100.46 OK
localdomain.com OK
```

Here the localhost sends it mail only from here to outside, the host 192.168.100.46 is allowed to send its mails via this mail server (relaying) as well as the hosts belonging to
the domain localdomain.com. All other hosts will not be allowed to relay their mails via this server.

**Converting the sender name**

The sender address can be modified to reflect a proper known Internet email address before being sent. For example: A mail sent from local user root would be written as root@myhost.local as sender. This name being unknown to the Internet, it needs to be converted to a known name like marty@totsi.com

To achieve this the one needs entries in file /etc/mail/genericstable.

Syntax:

```
LocalUserName InternetMailAddress
```

Examples:

```
root marty@totsi.com
root@myhost.local marty@totsi.com
michael michael.harmon@goofo.de
michael@server.local michael.harmon@goofo.de
```

**Mail delivery control**

When sendmail sends the outgoing mail, it is possible to control via which mail server and protocol the mails will be sent. It is done via entries in the file /etc/mail/mailertable

Syntax:

```
DestinationDomain Protocol:RemoteServer
```

Examples:

```
serveroof.com SMTP:mail.serveroof.com
educ.tim.fr SMTP:post.mitgoo.com
```

Here the mail to martin@educ.tim.fr would be sent to post.mitgoo.com using the SMTP protocol.

**Virtual mail domains or redirections**

To allow sendmail to support multiple mail domains as destination addresses, as if the local host had many FQDN mail names, or to redirect some mails to another mail address, entries in the file /etc/mail/virtusertable are used.

Syntax:

```
DestEmailAddress LocalUserName or RemoteMailAddress
```

Examples:

```
lorie@tango.com lorieanne
mitchell@parto.de mitchell.soubir@sidoune.com
```

Here mails received for lorie@tango.com will be saved in the mailbox of the local user lorianne, and mails received for mitchell@parto.de will be sent on to the mitchell.soubir@sidoune.com destination.
Important Note

Whenever changes are made to any of the configuration files in the /etc/mail directory, a new corresponding database file needs to be generated using the makemap command as described previously in this chapter:

```
makemap hash -f /etc/mail/virtusertable.db < /etc/mail/virtusertable
```
**1.113.3 Operate and perform basic configuration of Apache**

**Description:** Candidates should be able to modify simple parameters in Apache configuration files, start, stop, and restart httpd, arrange for automatic restarting of httpd upon boot. Does not include advanced custom configuration of Apache.

**Weight:** 4

Key files, terms, and utilities include:
- `httpd.conf`
- `apachectl`
- `httpd`

**IMPORTANT NOTE:**
This section lists only the more important items regarding Apache. Sometimes there will only be short descriptions and no more. For a full description, refer to other sources.

**Configuration files**

For backward-compatibility reasons Apache has 3 main configuration files. They are usually found in the `/usr/local/etc/httpd/conf/` directory. This location does not conform to the FHS standard. That's why the main daemon is normally started with the option

```
-f ConfigFilePath
```

Often it is `/etc/httpd/httpd.conf`.

The configuration files are:

- `httpd.conf`
  - The main, and mostly the only, configuration file used today.
- `srm.conf`
  - The resources configurations.
- `access.conf`
  - The configurations for controlling the access of Apache.

**Directives of Apache configuration file**

Apart from the main Apache core kernel directives, most directives used in the configuration file control functions that come with each separate module. A module might have one or more directives that dictate the way the module is used. Modules can be compiled internally to the main Apache daemon or compiled separately and loaded dynamically when the daemon is started. In a way similar to the Linux kernel, just that the modules are all loaded when Apache daemon starts and they are never unloaded afterwards.

The thing to remember here is that, if a module is not loaded when Apache starts, then its corresponding directives, if found in the configuration file, will be seen as junk and Apache will not start at all!!! Unfair but true.
List of directives to remember

Main server directives

ServerType standalone|inetd
  Start the server as daemon or via inetd
ServerRoot "/usr/local/httpd"
  Directory where files that are needed by Apache reside.
LockFile /var/lock/subsys/httpd/httpd.accept.lock
  File to prevent Apache running multiple main daemons.
PidFile /var/run/httpd.pid
  Where the process ID of Apache Daemon is stored.
Timeout 300
  Number of seconds of no TCP response before stopping the data stream with client.
KeepAlive On
  Keep the TCP connection with the client after a request.
MaxKeepAliveRequests 100
  Max 100 simultaneous requests per client on same TCP connection before requiring new TCP handshake.
KeepAliveTimeout 15
  If idle for 15 sec. end the TCP Connection with client.
StartServers 1
  Start 1 server ready for requests when daemon starts.
MinSpareServers 3
  Always keep minimum 3 spare servers for new clients.
MaxSpareServers 6
  Never keep more than 6 spare servers running.
MaxClients 150
  Maximum 150 requesting clients simultaneously.
MaxRequestsPerChild 0
  Unlimited (0) number of simultaneous requests per client.
Port 80
  Use the standard port 80 for client's HTTP requests.
User wwwrun
  Server processes are owned by the user wwwrun.
Group nogroup
  Server processes are owned by the group nogroup.
Topic 113: Networking Services

Listen 80
Same as Port 80 but used to assign more than one port to listen on. Normally used to assign the SSL port 443 as well as port 80.

ServerAdmin root@localhost
Email address of the Apache server administrator.

DocumentRoot "/usr/loervers 3
Always keep minimum 3 spare servers for new clients

DirectoryIndex index.html
Document sent from a directory when only the directory is specified in the HTTP request.

ScriptAlias /cgi-bin/ "/usr/local/httpd/cgi-bin/"
Specify the real path where CGI scripts are stored. It is almost like an internal Apache symbolic link from /cgi-bin/ to the real path.

Options Indexes FollowSymLinks ....
Options controlling the access to documents in system.

Order Allow,Deny
Select the order in which the allowing or denying directives will be treated. The first is normally seen as general rule and the second as exception to the general rule. See the next 2 directives below.

Allow from 192.168.100.0/24
Allow requests from clients belonging to this subnet

Deny from 192.168.100.56
Deny requests from client having this address

Configuration of Virtual Servers
Minimum directives):

NameVirtualHost 10.230.1.101
<VirtualHost 10.230.1.101>
  DocumentRoot /www2
  ServerName virtual1.mydomain.com
</VirtualHost>
Starting and stopping of the Apache main Daemon

`apachectl <command>`

Commands are:

- start
  - Starts the Apache daemon
- stop
  - Stops the Apache daemon
- restart
  - Same as a stop and then a start command.
- graceful
  - Sends a HUP Signal to the daemon to order a re-read of the configuration file.
- configtest
  - Checks the syntax of the configuration file.
  - Response: Syntax Ok

The `httpd` daemon command line options

Syntax:

```
/usr/sbin/httpd <options>
```

Options: (Important ones for LPI-102 are shown in bold)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-f &lt;ConfigFile&gt;</code></td>
<td>Specifies an alternate configuration file.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Display Apache's version number</td>
</tr>
<tr>
<td><code>-L</code></td>
<td>List core configuration directives</td>
</tr>
<tr>
<td><code>-S</code></td>
<td>Show virtual hosts settings</td>
</tr>
<tr>
<td><code>-t</code></td>
<td>Run syntax test for configuration files only.</td>
</tr>
<tr>
<td><code>-X</code></td>
<td>Single process foreground debugging mode</td>
</tr>
<tr>
<td><code>-R</code></td>
<td>Specify an alternate location for loadable modules</td>
</tr>
<tr>
<td><code>-C &lt;Directive&gt;</code></td>
<td>Processes this directive before reading config files</td>
</tr>
<tr>
<td><code>-c &lt;Directive&gt;</code></td>
<td>Processes this directive after reading config files</td>
</tr>
<tr>
<td><code>-h</code></td>
<td>List valid command line options</td>
</tr>
<tr>
<td><code>-l</code></td>
<td>List compiled-in modules</td>
</tr>
<tr>
<td><code>-d &lt;ServerRootDir&gt;</code></td>
<td>Specifies an alternate initial ServerRoot directory.</td>
</tr>
<tr>
<td><code>-D &lt;name&gt;</code></td>
<td>Defines a name for use in <code>&lt;IfDefine name&gt;</code> directives. <code>&lt;IfDefine name&gt;</code> is used to define different server global settings and chose which one will be read at start-up of Apache.</td>
</tr>
</tbody>
</table>
1.113.4 Properly manage the NFS, smb, and nmb daemons

**Description:** Candidate should know how to mount remote filesystems using NFS, configure NFS for exporting local filesystems, start, stop, and restart the NFS server. Install and configure Samba using the included GUI tools or direct edit of the /etc/smb.conf file (Note: this deliberately excludes advanced NT domain issues but includes simple sharing of home directories and printers, as well as correctly setting the nmbd as a WINS client).

**Weight:** 4

Key files, terms, and utilities include:
- /etc/exports
- /etc/fstab
- /etc/smb.conf
- mount
- umount

**NFS - Network File System**

The NFS is a File system that allows directories on a remote host to be mounted locally. Once mounted the remote directory is seen as a local directory by all applications. The difference is that it might take longer to read and write to it.

NFS is mostly used exclusively between variations of Unices OS.

**Mounting an NFS remote directory**

Mounting an NFS directory is very similar to mounting a local device. The command used is also mount.

Syntax:
```
mount [-t nfs] RemoteHost:RemoteDir LocalMountPoint [-o MountOptions]
```

Example:
```
mount -t nfs nfsserver:/public /mnt/public -o ro
```

This command will mount the remote directory /public located on the remote host nfsserver to the local mountpoint /mnt/public with the option ReadOnly (ro).

Note: NFS mounts can be specified in /etc/fstab:
```
nfsserver:/public /public nfs ro 0 0
```

To mount it, one of the following two commands can then be given:
```
mount nfsserver:/public
mount /public
```

**Setting-up the NFS server**

Before a client can mount an NFS directory, the server host needs to export the directory via a NFS server process.

The configuration file of the NFS server: /etc/exports
This file provides the NFS server with the following information:

- Local directory (NFS share) to be exported
- Which remote hosts are allowed to mount it
- Mount options for the allowed hosts

Example: in `/etc/exports`

```
/public 192.168.10.0/255.255.255.0 (ro) 192.168.10.45 (rw)
```

All the hosts residing in the IP range from 192.168.10.0-192.168.10.255 will be allowed to mount the server's nfs share with the option ReadOnly (ro), except the host having the IP 192.168.10.45 which will have ReadWrite (rw) mount privileges.

### NFS Server processes

Some processes need to be constantly running as daemons on the NFS server host in order to offer NFS shares to clients. In newer kernels the kernel based nfs daemon knfsd is normally used. This kernel process just needs to be started using the appropriate provided tools. Another and older method is to run a user space daemon called rpc.nfsd. Since nfs is an RPC type service an extra and necessary daemon process needs also to be running: the portmapper portmap daemon.

Without going into details of the RPC based services and the portmapper's functions, here is how it works:

When the NFS daemon starts, it registers its name and listening port number to the portmapper. When a client needs to connect with the NFS server daemon, it connects first to the portmapper on port 111 and asks for the port number where the NFS server daemon listen on, and then connects to it; just like a telephone directory assistance. Another daemon which also needs to be running in the background on the server host is the rpc.mountd. This daemon works together with either the kernel knfsd or the user space daemon rpc.nfsd to fully implement the network mount protocol of the NFS service.

So to resume: To implement the NFS service in a server host, 3 processes need to be running:

- RPC Portmapper daemon portmap.
- Kernel knfsd or userspace rpc.nfsd daemon.
- Mount protocol daemon rpc.mountd

Both NFS and mount daemons use the configuration file `/etc/exports` to identify and control the access to the server NFS shares.

Here are some other examples of the possible share entries and their options:

```
/ *.berlin.de (rw, no_root_squash)
/cdrom * (ro) 192.168.10.100 (rw)
/home 192.168.0.0/255.255.0.0 (rw)
/public *(rw, sync) *.nebbo.com (ro, sync)
/transfer 192.168.0.0/24 (ro, intr)
```

Note: Make sure that there are no spaces between the IP addr/Netmask and their corresponding mount options. A space in this area is used for another host/options pair definition like the NFS definition of the /public share above.

If there is a space, then the IP addr/Netmask hosts will be denied access and the access rights will be assigned to all other hosts. Example:
Topic 113: Networking Services

/public  achow(rw) diamond (ro)

Means: achow host will have read/write access, diamond host is denied access and all other hosts are allowed access with only read permissions.

UID and GID in NFS mounted shares

When a client writes a new file or directory into a remotely mounted share, assuming it is mounted with the ReadWrite(rw) option, the NFS server will assign the UID and GID of the file or directory being written to the UID and GID of the client user writing it. It means that if the user Mary with UID=500 on the client host writes a file in a mounted share, this file will be effectively be written into the servers share directory. The UID on the server’s host might be the UID of the user john....Ouch!!

Be careful with this. One solution would be to make sure that each client user also has an account on the NFS server host and that both UID and GIDs of users are the same on the client and on the servers host.

Squashing UID and GID for ALL

Another solution is to use the same UID and GID for all files and directories written via NFS. This is done with a ‘squashing’ function in the mount options of /etc/exports file:

all_squash
All files and directories get the nobody's UID and GID

anonuid=1000
Sets the NFS's nobody's UID to 1000

anongid=2000
Sets the NFS's nobody's GID to 2000

Example:
/public *.dept1.com(rw,all_squash,anonuid=1000,anongid=2000)

Selecting which UIDs and GIDs will be squashed

It is also possible to selectively set the UID that will be squashed and let the others be written as they are on the client's hosts. The mount options are squash_uids and squash_gids

Example:
/public *(rw,squash_uids=0-499,squash_gids=0-100)

Makes sure all the files and directories written into this share which originate from users having a UID from 0 to 500 will be written with the UID of user nobody. The same is true for the GIDs from 0 to 100.

Mounting share as root user

A special issue concerning this above NFS UID phenomenon is that if the root user on a client's host writes files or directories into the NFS shares, the effective file UID and GID will be of the user nobody instead of the user root for obvious security reasons. To turn this security feature OFF (NOT recommended) a special mount option(no_root_squash) can be included in the /etc/exports.
Example:

```
/public *:myfirma.com(rw) admin.myfirma.com(rw,no_root_squash)
```

This means that files or directories written by root on the client host admin.myfirma.com will have the UID and GID of the user root on the shares of NFS server's host: root UID=0 and GID=0.

Note: After making any changes to the `/etc/exports` file, the nfs daemon needs to be told to re-read this file for the new changes to take effect. It is done either via sending the HUP signal to the nfs daemon or by issuing the command:

```
exportfs -a
```

**Simple shares with SAMBA**

Description: SAMBA is a Linux program set that offers file and printing services to Microsoft Windows networks. These functions are already available from the Windows systems and Samba can easily replace them. When a Windows host uses these services which are provided by Samba, it sees the services as if a Windows provided it. These services are:

- File and Printing services
- Local and Master Browser (Provides the list of available shares)
- NT-PDC (Primary Domain Controller for NT networks)
- Windows 95/98 Logon server
- Printer Drivers install services

Windows clients:

- Win3.11, 95, 98, 2000, Me, XP

Protocol used:

- SMB (Server Message Block) based on NetBIOS

Programs involved:

- `smbd`
  - port 139-TCP
  - Shares and printers data transfer
- `nmbd`
  - ports 137-UDP & 138-UDP
  - WINS, WINS Proxying, Browsing, Name server for NetBIOS Hosts names

Service type:

- Triggered by inetd (xinetd) or as Daemon processes

Daemon Start/Stop scripts:

- `/etc/init.d/smb` for `smbd` daemon
- `/etc/init.d/nmb` for `nmbd` daemon
Topic 113: Networking Services

**smb.conf**

Main configuration file: smb.conf located in /etc or in /etc/samba

**Structure of smb.conf**

smb.conf is composed of sections and section parameters. Each line is either: a section name, a parameter for the section or, a comment

Sections names are enclosed in square brackets eg. [SectionName]

A parameter line is composed of: keyword(s) = Value

A Comment line starts with the character '#'

Parameters belonging to a section are listed after the section name

All parameters listed after a section are valid for that section until another section is declared.

Parameter keywords and section names are not case sensitive.

**Sections in smb.conf**

[global]

Defines the parameters that controls how the server operates

[homes]

Defines parameters for a special share that provides individual home directories for each loged-in users.

[printers]

Defines parameters for a special share that provides printer services

[sharename]

Defines parameters for a normal file share.

**Parameters of section [global]**

Note: Here, only the most used and important parameters used are shown, many more are available.

workgroup = MYWGROUP

netbios name = SAMBA1

NetBIOS name of the server

security = USER

Possible values: USER, server, SHARE

server string = "Samba %v Server on %h"

TEXT ID of server

guest account = nobody

local Linux ID of an unknown guest

encrypt passwords = yes
Topic 113: Networking Services

transfer of passwords is encrypted
printing = BSD
Type of printing system used in this host

**Parameters of section [homes]**
The parameters of this section pertains to all properly logged-in remote users.

comment = "Personal home directory"
path = /home/%U
Home directory for every user
browseable = no
do not show this share to other users
writable = yes
allow to write into this share

**Parameters of section [printers]**
This section allows samba to poll the local printing system and display all the available printer shares. Parameters are allowing to control its behavior.

comment = "All samba printers"
path = /tmp
Directory where the print jobs will be queued
create mask = 0700
maximum access rights of print jobs files written here
printable = yes
IMPORTANT: needed to make this share a print share
browseable = no
to only display this share as print share and not file share
guest ok = yes
allow guests to print through this print share

**Parameters of a section for a single printer**
This section defines an individual printer instead of using the section [printers]. The section name declares the shared printer name.

[hplj6]
comment = "HP laserjet-6 printer share"
Printer name = lp2
uses the local printer queue lp2
printable = yes
as above
Topic 113: Networking Services

path = /tmp
as above
create mask = 0700
as above
public = yes
allow everybody to use that printer

Parameters of a section for a normal file share

[transfer]
Name of the share
comment = "Common transfer share"
path = /var/shares/transfer
force create mask = 0666
access rights of all files written into this share
force directory mask = 0777
access rights of all directories created here
public = yes
same as guest ok = yes, allowing guests to access files (read) from this share
writable = yes
allow users to write files/dirs into this share. same as read only = no

Setting passwords for share access

Passwords can be transferred in two modes: encrypted and non-encrypted.
To transfer the passwords in non-encrypted format (clear text .... insecure!!!) the parameter: encrypt passwords = no must be entered in the [global] section.
This way Windows 95 (rev.1) hosts can be authenticated in Samba. In this case the normal linux system passwords file can be used for authentication.
To transfer the passwords in encrypted format (recommended and default), the parameter encrypt passwords = yes can be entered in the [global] section.
This setting requires that a samba password file be used for authentication because the type of password encryption is not the same as the Linux password encryption. This password file is called smbpasswd and is normally located in /etc or in /etc/samba. To set passwords for user in this file, the following command is used:

    smbpasswd -a username

Note: The user must already exist as Linux system user before being able to set its samba password. The user doesn't need to have a valid system password.

Security types in Samba authentication

To set the security type the parameter security = Value in[global]section is used.
security = user
With this security type, users (host) are logged-on once and identified as so for access to all shares. Most shares would then be accessible to only to properly logged-on users. Guests would then only be allowed access to shares that are set with:

guest ok = yes or public = yes.

security = share
This security type is the lowest one. This means that all the shares are accessible by anybody, whether guest or know user, unless the share is limited to certain user or all known users using the setting:

valid users = username1 username2 ... or guest ok = no

within the share settings.

security = server
This security type uses an external password (SMB) server for user authentication. This server can also be a Samba. The password server needs to be specified with the [global] setting:

password server = PWServerNetBIOSName

This password server must be running in security = user mode.
The user must have an account in the password server and in the local samba.
Important: Never give its own samba server name as password server name. This would result in an endless loop rendering the samba server unusable.

security = domain
This security type uses an external PDC server for user authentication. The password server needs to be specified with the [global] setting:

password server = PDCServerNetBIOSName1, PDCServerNetBIOSName2,..

The user must have an account in the PDC server and in the local samba.
The transfer of the password must also be set to 'encrypted' with the [global] setting:

encrypt passwords = yes

The workgroup setting must also set to the domain name of the PDC server. The local samba must also register itself as participant of a domain by setting a special password using the command: smbpasswd -j DomainName

The PDC must also create an account for the samba server using the program Server Manager for Domains. The samba server NetBIOS name is then given here.

Using WINS server for NetBIOS names conversion
Normally a broadcast is sent to all local hosts to find out an IP for a particular name.
If a WINS (WIndows Name Server) is desired to prevent broadcasting such requests, then the following setting in [global] section need to be included:

wins server = WINSServerIP
Using Samba as WINS server

To use the local samba as a WINS server then enter the following [global] setting:

```
wins support = yes
```

Note: Never use the local samba as WINS client ( wins server = WINSServerIP) and as WINS server at the same time ( wins support = yes).
Topic 113: Networking Services

**Typical Configuration of smb.conf**

Note: The following configuration parameters are only examples and NOT all of them need to be learned for the LPI 102 exam. It is provided only for reference and understanding purposes.

**Server Global Options**

```
[globals]
workgroup = WORKGROUP
kernel oplocks = false ; TCP protocol fine tuning parameters
socket options = TCP_NODELAY
printing = cups ; Printing system. Other possibilities:
 bsd, sysv, plp, lprng, aix, hpux, qnx, cups
printcap name = cups ; File listing printer queues and capabilities
load printers = yes ; All printer names will be presented as shares?
encrypt passwords = yes ; Use encrypted samba passwords instead of linux passwd
null passwords = no ; Allow users with empty passwords to access shares?
security = user ; Users are logged-on once
 = share ; Users must log-on for each share
 = server ; Samba asks a password server to validate the user.
 = domain ; Samba asks an PDC server to validate the user.
 ; Note: server and domain need also the setting of:
 ; password server = PWServerNetBIOSName
guest account = nobody ; What usename will guests use in Linux
map to guest = Bad Password ; Accepts any wrong login is a guest user
 = Bad User ; Good name and bad password is refused,
 ; Bad name or password is accepted as guest
os level = 2 ; WinforWorkgroups/Win95/Win98 = 1
 ; NT-Desktop = 17
 ; NT-Server = 33
local master = yes ; Samba (nmbd) is the Local Master Browser?
preferred master = yes ; Force election for master browser when samba starts?
wins support = no ; Samba is a WINS server? (lmhosts contains data)
wins server = 192.168.1.1 ; IP of WINS server if any exists in the network
```

**Interfaces or networks that samba will respond to**

```
interfaces = eth* eth0 192.168.2.10/24 192.168.3.10/255.255.255.0
loglevel = 7 ; Log levels possible 1 to 7 : 1 minimal,
 ; 3 normal,
 ; 7 a hell of a lot
```

**Standard Shares**

Share names are reserved only for these purposes

```
[homes]
comment = Home directories
browseable = no ; Name of user share seen by other users?
read only = no ; Cannot write? (same as writable=yes)
create mode = 0750 ; AND with 0766(default) to set the files access rights
```
Topic 113: Networking Services

[printers]  
comment = All Printers  
read only = yes  ; We can save files there? (absolutely NO !)  
printable = yes  ; We can send print jobs to it? (absolutely yes !)  
public = yes  ; Usable by all users including guests?  
directory = /tmp  ; Where print jobs will be saved before printed  
create mode = 0700  ; Allow only owners to modify saved print jobs

Normal Shares

[cdrom]  ; Example of a typical share  
comment = CD-ROM  
path = /media/cdrom  ; Path of the share  
writeable = no  ; Prevent to writes to CDROMs. (same as read only=yes)  
locking = no  ; Prevent samba from locking accessed files while opened  
public = yes  ; Usable by all users incl. guests? (same as guest ok = yes)  
[LaserJet]  ; Single Printer share settings if load printers = no  
printable = yes  ; User paul is the only one allowed to use this printer.  
printer = laserjet  
printing = cups  
read only = yes  ; Same as writeable = no  
valid users = paul

List of extra usefull share parameters

Global area:

hosts equiv =/etc/hosts.equiv  ; List of hosts & users allowed w/o passwords.(Global)  
                      ; File Format: ClientFQDNHostname UserName

Shares (services) area:
Topic 113: Networking Services

path = /var/pc/%m ; Each machine gets its own share directory, which
               ; must exist and must be all in lowercase characters)
path = /var/users/%u ; Each user gets own share dir (user dir. must exist)
create mode = 0740 ; Mode ANDed with Windows (rw/ro) and 0766 for file
                   ; creation
directory mode = 0751 ; AND with Windows (rw/ro) and 0755 for dir creation
force create mode = 0740 ; Forces all the files to have this mode when created
force directory mode = 0750 ; Forces all dirs to have this mode when created
hosts deny = 192.168. ; Hosts that are not allowed to acces the share.
hosts allow = 150.203. EXCEPT 150.203.6.66 ; Allows all hosts with IP starting with 150.203.
                                           ; except the host which has the IP 150.203.6.66
                                           ; Valid values: ALL, FQDN, IPAddr, NetAddr/Netmask,
                                           ; PartialIP. Often used in combination with hosts allow
valid users = john, sophie ; Sets the only users allowed access to the share.
write list = marie, @admin ; Normally combined with writeable = no
                 ; These users or group (@) may only read the share.
read list = marie, @shipping ; Normally combined with writeable = yes
follow symlinks = no ; Doesn't permit following symlinks. Default is yes
wide links = no ; Limits following sym links to inside share tree.
preexec = LinuxCommand ; Runs a command as user before accessing a share
root preexec = LinuxCommand ; Runs a command as root before accessing a share
postexec = LinuxCommand ; Runs a command as user before closing a share
root postexec = LinuxCommand ; Runs a command as root before closing a share
**Topic 113: Networking Services**

### 1.113.5 Setup and configure basic DNS services

**Description:** Candidate should be able to configure hostname lookups and troubleshoot problems with local caching-only name server. Requires an understanding of the domain registration and DNS translation process. Requires understanding key differences in configuration files for bind 4 and bind 8.

**Weight:** 4

Key files, terms, and utilities include:
- `/etc/hosts`
- `/etc/resolv.conf`
- `/etc/nsswitch.conf`
- `/etc/named.boot` (v.4) or `/etc/named.conf` (v.8)
- `named`

**Introduction**

Since the start of TCP/IP networking, the use of IP Numbers as host identifiers has proved to be non-practical. Therefore, when a client program needs to communicate to a service on a particular host, it uses names to identify the server hosts. Since the TCP/IP protocol doesn't handle names directly as host identifiers, this name needs to be converted into an IP number, before the client program can proceed in trying to establish a connection to the server host.

This conversion of Names to IP is called 'name resolution' and is handled by a background mechanism called the 'resolver'. If for example the command 'ping strato.de' is given to bash, the program ping will detect that its destination is not an IP but a host name. To translate this name into an IP, the ping program calls the 'resolver' for assistance. This 'resolver' is simply a set of system library functions. The 'resolver' mechanism will then proceed and try to resolve the host name into an IP and deliver it back to the calling application.

Here I will do a bit of history. In the (good?) old days of the start of the Internet, all the names to IP conversions were made via a search through a local database file called: `/etc/hosts`. This file was maintained up-to-date by a central computer (owned by NIC-Network Information Center) and then all other computers regularly fetched a copy of it.

As the Internet and the number of available hosts grew, this method became very impractical. To solve this situation, a system called Domain Name Service (DNS) was developed by Paul Mockapetris. The first DNS system implemented was called JEEVES. Another variation of it was developed for the BSD Unix that was called BIND (Berkley Internet Name Domain). BIND is now one of the most widely used DNS Servers on the Internet. LPI-102 Exam bases its DNS Topic on this system.

**Registering Domain Names**

In the beginning of the Internet a single authority was responsible for registering the Domain names. Now there are a vast number of qualified domain registrars available on the Internet.

**Resolving host names**

In Linux, the 'resolver' goes through the following sequence to resolve a HostName to an IP address:
It looks in the file `/etc/host.conf` or `/etc/nsswitch.conf` to determine the sequence and where should it should look for the resolving of the name.

The older Linux standard library, libc, used `/etc/host.conf` as its master configuration file, but Version 2 of the GNU standard library, glibc, uses first the file `/etc/nsswitch.conf` and if not found then the file `/etc/host.conf`. I'll describe each in turn, since both are commonly used.

If the `/etc/host.conf` is used then the entry order determines in which order the search for resolving is done: eg.

```plaintext
order hosts,bind
```

Tells the resolver to look first in the file `/etc/hosts`. And if the name is not found there, then it should make a query to a DNS server.

Which DNS is queried and in which order is determined by the content of the file `/etc/resolv.conf`. Only if a DNS doesn't respond at all the next DNS in the list will be queried. If any queried DNS responds, by saying that he doesn't know the answer, then no more DNS queries are made and the next DNS in the list is NOT queried. Only up to 3 DNS will be queried sequentially until one responds. The fourth DNS and so on, if listed, will be ignored even if the third one has not responded at all. Example: (content of `/etc/resolv.conf`)

```plaintext
Nameserver 245.67.146.78
Nameserver 245.67.56.80
Nameserver 245.67.17.256
```

If the `/etc/nsswitch.conf` file is used, then the 'resolver' looks for a line starting with the keyword: hosts eg.

```plaintext
hosts: files dns
```

In this example the 'resolver' will look first in the file `/etc/hosts`.

If not found in `/etc/hosts`, it will then make a DNS query. Which DNS is queried and in which order is determined by the content of the file `/etc/resolv.conf` in the same fashion as above when the `/etc/host.conf` is used.

Use of a DNS

The normal use of a DNS is to provide domain names to IP translation for domains for which the DNS is Authoritative as well as a caching service for domain name resolutions that were passed on to other DNS. When a DNS is not Authoritative for any domain, then its is called a 'Cache Only DNS'. This type of DNS passes on the DNS requests to other DNSs and caches the results for further requests. When a DNS doesn't know the answer to the name resolving request, it has 2 choices depending on its configuration: It can either forward the request to another DNS, which will do the search work(recursive request), or it will try to find it itself by starting at the very root of all name servers:(one of 13 root servers) and follow-up on each authoritative DNS down the domain path(iterative requests).

**BIND DNS sever**

BIND (Berkely Internet Name Daemon) was developed in different versions. Two of the most used versions, which differ in their configurations files, are BIND-4 and BIND-8. BIND-9 has since been also developed and its differences to BIND-8 are insignificant concerning LPI-102.
Topic 113: Networking Services

**BIND-4 DNS Server**

BIND-4 is made of 3 components:

- The DNS daemon program (named) that watches the 'name service' port (53) and resolves the requests of names to IP, or reversely, made on that port.
- The main configuration file (/etc/named.boot) for named, where the domains and zones for which named is responsible are declared.
- The DNS database files (/var/named/*):
  - named.ca or named.root: Database of root servers
  - domainName.zone and IPNumber.rev are Databases of domain names.

They are used by named to make the Name <---> IP conversions.

**BIND-8/9 DNS Server**

BIND-8/9 is made of 3 components:

- The DNS daemon program (named) that watches the 'name service' port (53) and resolves the requests of host names to IP, or reversely, made on that port.
- The main configuration file (/etc/named.conf) for named, where the domains and zones for which named is responsible are declared.
- The DNS database files /var/named/*:
  - root.hint: Database of Root servers
  - domainname.zone and IPNr.rev etc. used by named to make the Name <---> IP conversions (resolution).

**Configuration of BIND-4**

The configuration file of BIND-4 (/var/named/named.boot) is composed of:

- Directives that controls the server's functions. Example:

  directory /var/named
  cache . root.cache
  etc.

- Directives that declares DNS zones and databases related to them. Example:

<table>
<thead>
<tr>
<th>Zone Type</th>
<th>DomainName</th>
<th>DatabaseFile</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>michel.home</td>
<td>michel.zone</td>
</tr>
<tr>
<td>primary</td>
<td>168.192.in-addr.arpa</td>
<td>michel.rev</td>
</tr>
</tbody>
</table>

**Configuration of BIND-8/9**

The configuration file of BIND-8/9 has two different kind of sections:

- The global server configuration section. Example:
options {
    directory "/var/lib/named";
    forwarders { 213.20.148.142;
                 193.189.244.205;
                 217.237.151.33; }
    forward first;
    listen-on port 53 { 127.0.0.1; }
    listen-on-v6 { any; }
    query-source address * port 53;
    transfer-source * port 53;
    notify-source * port 53;
    allow-query { 127.0.0.1; }
    notify no;
}

The Zone declaration sections. Example:

zone "." in {
    type hint;
    file "root.hint";
};
zone "localhost" in {
    type master;
    file "localhost.zone";
};
zone "0.0.127.in-addr.arpa" in {
    type master;
    file "127.0.0.zone";
};

DNS Database Files

The databases format of both BIND-4 and BIND-8/9 are almost identical with some minor differences which are insignificant to LPI-102. Each database file contains a very strict fields formatting. Records, except for SOA records, are normally written one per line.

Types of database files

There are 3 types of databases files used by Bind 4/8/9:

Root server file

Used to supply the IP numbers of the (13) root DNS servers in Internet. An update of this file can be obtained by FTP at the address: ftp.rs.internic.net. For Bind 4 this file is called named.ca or named.cache. For Bind 8/9 it is called root.hint

Extract of a record:

```
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
...
```

Forward resolving files

Used to resolve the HostNames to IPs. Normally uses the SOA, NS, CNAME, HINFO, MX and A Records. See examples further down.
Topic 113: Networking Services

Reverse resolving files

Used to resolve the IPs to HostNames. Normally uses the SOA, NS and PTR records. See examples further down.

Record syntax

Index [TTL] [class] RecordType Data

Index
Key Argument used to resolve a DNS request. Normally an IP number or a domain name. If omitted then the previous Index is used.

[TTL]
Time To Live(Optional). Time, in seconds, this record information will be valid.

[class]
Class of record(Optional). Normally not used. If used, then it is normally IN (for Internet).

RecordType
Type of record: SOA, NS, A, CNAME, HINFO, MX, PRT. See below the detailed types of records.

Data
Information provided by the record.

Types of DNS records

Start Of Authority Record (SOA)

domainname [TTL] [class] SOA origin. hostmaster (extras)

domainname
The domain that this DNS is Authoritative for. @ for local host

origin
The FQDN-hostname where the master zone Database is located including the trailing dot '.

hostmaster
The email address of the hostmaster and replacing the @ with a dot. eg.

michel.linux.local

instead of

michel@linux.local

extras
The list of values like serial number, etc. all inside paraenteses. If domainname is blank, then it refers th SOA-record zone. Slaves NS declarations are needed to allow slaves updates on master restart.

Example of an SOA record:
Topic 113: Networking Services

@ IN SOA @ root (42 ; serial number
2D ; refresh
4H ; retry
6W ; expiry
1W ) ; minimum

Name server(NS)

domainname [TTL] [class] NS ServerName

If domainname is blank, then it refers the SOA-record zone. Slaves NS
declarations are needed to allow slaves updates on master restart.

Address record(A)

[FQDN-]host [TTL] [class] A IP-address

If [FQDN-host] is blank, then it refers the the name in previous record.

Canonical Name record (CNAME)

nickname [TTL] [class] CNAME [FQDN-]host

Host Information (HINFO)

[FQDN-]host [TTL] [class] HINFO Hardware Software

Hardware and Software are text describing the host.

Mail Exchanger Record (MX)

DestinationHost [TTL] [class] MX Pref. MailServerHost

DestinationHost

The mail destination host name. Blank is localhost

Pref.

The preference number for MailServerhost to use. Smaller numbers have priority

MailServerhost

The Mail Exchange Server to use for this destination. It MUST contain the FQDN
including the trailing dot '.'

Pointer Record(PTR)

rev-IP.in-addr.arpa [TTL] [class] PTR HQDN-hostname.

rev-IP.in-addr.arpa

The IP in reverse order with .in-addr.arpa

HQDN-hostname

The FQDN of the host including the last dot '. ' It MUST contain the FQDN
including the trailing dot '.'

Example of Database Files

Note: Wherever the char. '@' is used, it refers to the domain specified by the present
database file.

Root servers file

141
Forward resolving files (e.g. localhost.zone)

$TTL 1W
@ IN SOA @ root ( 42 ; serial (d. adams) 2D ; refresh 4H ; retry 6W ; expiry 1W ) ; minimum
IN NS @
IN A 127.0.0.1

Reverse resolving files (e.g. 127.0.0.1.zone)

$TTL 1W
@ IN SOA localhost. root.localhost. ( 42 ; serial (d. adams) 2D ; refresh 4H ; retry 6W ; expiry 1W ) ; minimum
IN NS localhost.
1 IN PTR localhost.

DNS Resolving request tools

Many tools can be used to test a DNS or make a DNS request manually. The most commonly used are:

host

Simply makes a DNS request to resolve the HostName or IP given. The requested NameServer can also be entered if other than the default nameservers from /etc/resolv.conf is to be used.

Syntax:

host [options] HostName/IP [NameServer]
dig

(domain information groper) Simply makes a DNS request to resolve the HostName or IP given. Its options and results are more detailed than other DNS tools. Most used tool for DNS administrators.

nslookup

(Deprecated!) Older tool to make DNS requests. Can be compared to the tool 'host' as far as results are concerned. Almost no more used by DNS administrators.

Cache only DNS

A 'Cache Only DNS' is a name server that passes on all the requests made to it to another DNS if its cache doesn't already have the information requested.

The minimum configuration required for this type of DNS is:

named.conf file configured with declarations for:

- root servers domain('.') and its database filename.
- forward resolving of localhost domain ('localhost') and its database filename. (localhost.zone)
- reverse resolving of localhost domain ('localhost') and its database filename. (127.0.0.zone)

Forward and reverse resolving database files for localhost. Example:

/var/named/localhost.zone
forward resolving file
/var/named/120.0.0.zone
reverse resolving file

Note: This type of cache only DNS makes requests directly to one of the root servers and to each of the DNS that are authoritative for the domains to resolve. This is called making iterative requests. That means this DNS makes multiple external requests per requests it receives. An alternative and better suited for a DNS installed inside an enterprise would be to use the 'followers' configuration directive in /etc/named.conf configuration file. It takes up to 3 DNS IPs. Example:

forwarders { 251.45.26.6; 250.125.34.63; 164.45.64.123; };

This would allow the DNS to make a recursive request to an external DNS and this DNS would do all the work of making the iterative requests.
1.113.7 Set up secure shell (OpenSSH)

**Description:** The candidate should be able to obtain and configure OpenSSH. This objective includes basic OpenSSH installation and troubleshooting, as well as configuring sshd to start at system boot.

**Weight:** 4

Key files, terms, and utilities include:
- `/etc/hosts.allow`
- `/etc/hosts.deny`
- `/etc/nologin`
- `/etc/ssh/sshd_config`
- `/etc/ssh/known_hosts`
- `/etc/sshrc`
- `sshd`
- `ssh-keygen`

TODO
Topic 114: Security

Total weight for this topic 8

1.114.1 Perform security administration tasks ......................................................... 4
1.114.2 Setup host security ...................................................................................... 3
1.114.3 Setup user level security .............................................................................. 1

Summary
TODO
1.114.1 Perform security administration tasks

**Description:** Candidates should know how to review system configuration to ensure host security in accordance with local security policies. This objective includes how to configure TCP wrappers, find files with SUID/SGID bit set, verify packages, set or change user passwords and password aging information, update binaries as recommended by CERT, BUGTRAQ, and/or distribution's security alerts. Includes basic knowledge of ipchains and iptables.

**Weight:** 4

Key files, terms, and utilities include:
- /proc/net/ip_fwchains
- /proc/net/ip_fwnames
- /proc/net/ip_masquerade
- find
- ipchains
- passwd
- socket
- iptables

TODO
1.114.2 Setup host security

Description: Candidate should know how to set up a basic level of host security. Tasks include syslog configuration, shadowed passwords, set up of a mail alias for root's mail and turning of all network services not in use.

Weight: 3

Key files, terms, and utilities include:
/etc/inetd.conf or /etc/inet.d/*
/etc/nologin
/etc/passwd
/etc/shadow
/etc/syslog.conf

TODO
1.114.3 Setup user level security

**Description:** Candidate should be able to configure user level security. Tasks include limits on user logins, processes, and memory usage.

**Weight:** 1

Key files, terms, and utilities include:
- quota
- usermod

TODO